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INTRODUCTION

The technique of stationary clutter reduction is one of

the most important and most interesting areas of modern radar.

Thanks to the development of this technique it is possible to
detect desired objects even in the presence of very strong

passive interference, which greatly increases the range of
radar application. Reduction of stationary clutter thus

plays an ever more important role in civil as well as in

military radar.

The present volume has as its goal to present an outline

of the theory and the technique of stationary clutter reduction

in radar. The first volume discusses the basic applications

and the methods of stationary clutter reduction, arid the

necessary theoretical foundations; the second volume addresses

the problems of the realization of appropriate devices and

the measuring methods.

A presentation of the overall problems of stationary

clutter reduction - even in the form of an outline - requires,

on one hand, using rather advanced mathematical methods, and

on the other, a detailed discussion of technical problems.

Because of such a broad range of problems considered in this book,

it seems appropriate to include in the introduction some

methodological remarks. The material has been purposely arranged

in such a form as to permit the use of this book by readers of

venious interests and theoretical background. Generally, we

assume familiarity with the basics of radar coverd by the mono-

graph "Principles of Radar", PWN, 1956, I-X. A reader interested

mainly in the technical problems may, after reading Chapters

1-3, look briefly at Chapter 4, cover more carefully Chapter 5,



look over and read the conclusions of Chapter 6, read

Chapter 7 and 8.1, depending on the needs more or less
thoroughly cover the rest of Chapter 8, read Chapters 9 and

10, and read completely the Chapters in the second volume.
A reader more interested in the theoretical aspects of the

problems discussed may cover Chapters 1-3, read Chapter 4,
look through Chapter 5, read carerully Chapters 6-10; the

second volume, which covers mainly technical problems, may be
- depending on his interest profile - looked over or omitted.

Additional literature in the area of the theory or signal

detection includes a monograph by J. Seidler, "Statistical

theory or signal reception", PWN, 1963. Readers with less or

a theoretical background and interested more in the practical

problems, will rind an easier discussion or the basic problems

or signal detection in a collective work edited by J. Seidler,
"Modern methods or optimization or telecommunication systems",
Communication Publ.,. 1965 . The author wishes to thank Prof. S.
Slawinaki, who suggested writing this book and Prof. Dr. J. Seidler for
discussions on problems of statistical theory of signal reception.
I also wish to thank Dr. J. Kulikoweki for his valuable suggestions.

I. Basic Applications and Methods in the Technology of

Reduction of Stationary Clutter.

1. The need for reduction of stationary clutter.

In radar scanning or space there are orten - aside rrom

images produced by objects whose detection is the goal of a

given radar system - numerous images or other objects. Images

derived rrom objects whose detection is not required in a given

application interfere with the process or obtaining and process-
ing or information, and in many cases may completely prevent
the detection or desired object. In radar, such interference

is called passive interference. Since this interrerence is

derived from stationary objects or rrom objects which move

relatively slowly, and because their variability in time is
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much slower than, e.g.that of images derived from air-

planes, a term often used is stationary clutter.

Passive interference occurs most often as a result

of reflection by field objects, clouds, atmospheric precipi-

tation, or artificially introduced interfering objects.

Detection of desired objects against a background of

passive interference is extremely important for radar

methodology, in civilian and in military applications. Thus,

radar stations serving to control air traffic encounter

very strong images of filed objects which often surpass the

level of the detector heat noise by tens of decibels. Fig.

1.1 shows as an example the graph of the intensity of

stationary clutter surrounding a typical intermediate range

radar station and Fig. 1.2 is a photograph taken from the

screen of this station with the systems for reducing stationary

clutter turned off. As can be seen, without applying special

methods for interference reduction, stationary clutter

completely prevent observation of airplanes within a radius

of tens of kilometers around the airport, a range of particular
1interest and importance. [1.1] By application of appropriate

methods it is possible to reduce the interference from field

objects to an extent sufficient for detection of airplanes.

In addition, clutter originating from the reflections of
clouds and from atmospheric precipitation may, in some cases,
make it impossible to detect objects over relatively large

areas, which could significantly decrease the operational

value of radar. Thus, it is necessary to reduce clutter of

meteorological origin. 2

In mountaineous areas, of course, one can observe permanent
echos at even larger distances. For instance, a graph of
permanent echos occurring in the Alps may be found in the work
/1.2/.
2 Examples of such interference and the effectiveness of its
reduction by appropriate systers are discussed in Chapter 2.3.
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The importance of the problem is even clearer for

military applications since in this case it is necessary to

reduce not only the stationary clutter of natural origin,

but also to counteract the passive interference generated

by the opponent.

M4509 M O!MS Od58 =]150'8 Below 15 dB

Fig. 1.1 Results of intensity measurements for stationary

clutter around a radar station of range control. One mark

every l0km.
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radar station in the presence of passive interference;

it may be seen that detection of airplanes was made impossible

under these conditions. The air defense of the Third

Reich was not capable of effective action in the presence of

passive interference up to the end of the war, which doubtless

had some influence on the outcome of the Second World War

1.3.

The examples cited above indicate a definite need for

reduction of passive interference of various types in many

radar applications. Depending on the kind of passive inter-

ference and the purpose of radar it may be useful (for tech-

nical and economical reasons) to apply one of the known

reduction methods, or it may be necessary to use several

methods simultaneously. A discussion of the basic reduction

methods for stationary clutter is presented in the following

chapter.

2. Review of the basic methods for reduction of stationary

clutter.

The present chapter contains a review of the basic

methods used in radar devices for detecting desired images

against a background of various types of passive interference.

The methods described will be discussed in general terms, to

familiarize the reader with the basic problems of stationary

clutter reduction; questions pertaining to the technical

realization will be considered in detail in appropriate

chapters of Volume TI.

All methods of reducing passive interference relative
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to images derived from detected objects are based on taking

advantage of the differences between the detected signals

and the interference. Depending on the specific requirements,

a single most effective method for a given case is used, or

several methods have to be used simultaneously. The basic

systems and devices used against passive interference may

be classified according to differences between the desirable

and the undesirable sig-nals.

2.1. Selection by distance

In some cases stationary clutter originates exclusively

from surface objects located in the vicinity of the radar,

which is supposed to detect only objects located at a

distance. Under such circumstances it is possible to mark the

signals in such a way as to prevent the signals within the

range of stationary clutter from appearing on the screen.

In stations having elevated antennas in the form of a single

beam this method cannot be used to detect objects against a

background of stationary clutter. It prevents unnecessary

illumination of the image center. In multiple-beam stations,

the situation is more favorable (see Chapter 2.2, Fig. 2.6).

When signals originating from detected objects are

expected to be stronger than the stationary clutter, it is more

advantageous to apply Sensitivity Time Control (STC) or Swept

Gain 1. This consists in introducing a time-dependent alt_ rna-

ting amplification of the detector [2.1;2.2]. Since the

reflection amplitude of the nearest surface objects is the

greatest, and decreases with distance (cf. Fig.l-l), the

sensitivity of a detector equipped with STC is the lowest at

small ranges (Fig. 2-1). STC not only eliminates the illumina-

tion of the image center, but also prevents oversteering

of the detector, making it possible to detect desired objects



when they have a sufficiently large amplitude relative to

the stationary clutter.

One of the limitations on the effectiveness of STC

is caused by the fact that if stationary clutter occurs

with variable intensity in different azimuths, a compromise

time characteristic has to be chosen for STC, which will not

be optimal for each azimuth.

Scanning impulse

Arrpli fication R

Fig. 2.1. Change in detector Fig. 2.2. Deformation of
sensitivity as a function of the covering diagram
time (Sensitivity Time Control) caused by the action of

STC

The covering diagran for large-elevation angles under-

goes a characteriotLc defor-maton when STC is applied [2.3;

2.4] (see Fig. 2.2; also text relating to Fig. 2.3).

STC is also used in marine radars, where reflections

from waves are approximately the same for every azimuth, and

in conjunction with other methods of stationary clutter

reduction (see Chapter 2.2)

It should be added here that STC is used in radar stations

not only for reasons stated above, but also to eliminate

undesirable signals of other types. Since the strength of

In English literature the term Swept Gain or Sensitivity

Time Control is used (Abbr. STC), In Russian - vary
(Vremennaia Automaticheskaia Reguiirovka Usileniia).
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reflected signals is inversely proportional to the fourth

power of the object distance from the radar, objects situated

nearby (e.g. birds) may give relatively strong signals,

complicating the work of the operator at stations with a high

voltage. STC is used to equalize signal amplitudes as a

function of distance at stations of this type [2.51.

2.2. Selection by direction

When passive interference occurs in directions different

than the direction of the objects to be detected, it is

possible to improve the signal to clutter ratio by using

appropriate directional characteristics of the antennas. The

most typical examples of the application of this method is

the reduction of passive interference caused by reflections

from surface objects located in the vicinity of the radar

which serves to detect aircraft. One of the important parameters

here is the radar location. Various methods may be used in

selecting the optimal position, at which the interference

caused by surrounding objects is the smallest. Thus, one may

use sections of the terrain,determined on the basis of topo-

graphical maps, take measurements using test installations, or

apply a method consisting in making a miniaturized three-

dimensional model of the terrain in question and taking photo-

graphs under appropriate illumination. The last method gives

a good agreement with the results of measurements taken under

real 2onditions [2.451.

In some locations it is possible to reduce the reflections

from field objects by placing the antenna low, sometimes even

in a recess [2.46], or by surrounding the position of the

antenna with an appropriate metal fence [2.47].

In addition, antennas with high obliquity of the lower

9



of the elevation characteristic of direction are used in

order to reduce stationary clutter. It is known that in order

to obtain a highly inclined lower slope of the characateristic

it is necessary to use antennas with a large (relative to

the wavelength) vertical dimension [2.6], which may cause

problems when longer wavelengths are used. This method is

used, for instance, in airport surveillance radar1, e.g. in

radars operating at a 10cm wavelength (ASR-3 and ASR-4)[2.7],

in conjunction with other methods.

When it is difficult, for technical reasons, to obtain

an antenna characteristic with a sufficiently sharp lower

edge, a modification of the elevation characteristic is also

often used to accentuate signals originating from airborne

objects situated above the area of stationary clutter; this

method is illustrated in Fig. 2.3. Obtaining such an antenna

characterisitc does not require any additional increase of the

vertical mirror dimensions, and therefore this method is

often used in devices operating in the 23cm band as a supple-

ment to other methods of stationary clutter reduction; this

type of characteristic also compensates for the unfavorable

side effect of the STC system [2.3].

An antenna with a similar form of elevation characterisitic

is used e.g. by the air route surveillance radar [2.7]2 ARSR-2

of the Raytheon company (USA)[2.4] and by the station of CR-3

type of the CSF company (France)[2.8;2.9].

In order to achieve a significant reduction of the reflec-
tions of field objects, a two-beam system is also used, in

which the lower beam serves to detect objects at farther ranges

1 In Russian literature - radiolokator zany aerodroma; in English
- ASR (Airport Surveillance Radar)

2 In Russian literature - raionnyi radiolokator krugpvo obzora; in
English - Air Route Surveillance Radar.

10



and lower altitudes, using scoring or STC in the stationary

clutter range; the other beam has a characteristic designed

for reducing field clutter (Fig. 2.4). A similar system,

in conjlnction with e.g. STC systems (cf previous chapter) is

used in radar stations which direct and control air traffic

and made by "Decca" (Great Britain) [2.8] and by "Thomson-

houston" (France)[2.4]; these systems will be described in

Chapter 3.

M 

R

Fig. 2.3 Antenna characteristic Fig. 2.4 Two-beam antenna
facilitating aircraft detection system.
above stationary clutter area.

Fig. 2.5. shows as an example the photographs of the

indicator of a DASR-1 station, which illustrate the operation

of a two-beam system under conditions with strong stationary

clutter [2.10]. The method described is designated in the

English literature by the abbreviation ATI for Air Target

Indication [2.11].

Even better results can be obtained by using a multiple-

beam elevation characterisitc (see Fig. 2.6 - cf [2.4;2.12]).

A similar effect is obtained by programmed gating as a function

of the elevation angle (or by STC), used at "three dimensional"

radar stations which operate with rapid scanning in elevation

by a narrow beam [2.45].

It is not always possible to apply the selection method

11



by direction; e.g. in the case of intentional passive inter-

ference, usually both the aircraft to be detected and the

interfering objects are located in the same direction and

at a similar distance.

A

vu1

I

k, /

Fig. 2.5. Operation of a two-beam system in the presence of
strong stationary clutter. A-photograph of the screen without
using the two-beam system; strong stationary clutter is seen.
B-photograph of the screen with the two-beam system; stationary
clutter practically absent, aircraft previously masked by
stationary clutter are seen. Sation Decca DASR-1, range 25 mi.
(about 46 kin) [2.10].

In some cases multiple-beam stations may have an advantage

12



over systems with an elevation characteristic of the "cosec 2f

type. A"s shown in Fig. 2.7, an airplane located within a
cloud of interference will not be detected by either type

of' station, but an airplane flying above this cloud may be
detected in one of the channels of the multiple-beam station

without using any other anti-interference methods. Stations
with an elevation characteristic of the "cosec , type obviously

do not have this option.

Fig. 2.6. Multiple-beam elevation Fig. 2.7. Detectability of'
characteristic of the antenna objects against a background

of passive interference at
a multiple-beam station.

2.3. Selection by polarization

In some cases objects which cause passive interference

have specific properties with respect to polarization of

reflected signals. The most typical example are raindrops,

which are essentially spherical. As we know, an electromagnetic

wave with circular polarization is reflected from a spherical

object with circular polarization, although with opposite

twist [2-13;2.14]J. Since generally the same antenna is used

in radar for emission and reception, when a scanning signal

with circular polarization is used, theoretically the signals

reflected by spherical objects would not be detected, because

they would have the polarization with a twist opposite to that

of the receiving antenna. In contrast, airplanes, being

objects with a complex shape, reflect a wave with circular

polarization in a random fashion, such that there are always

13



some components of the reflection which will be detected

by the receiving antenna. Thus we have the possibility of

effective reduction of' the interference caused by rain clouds

etc., and a relatively smaller loss of' the signal to be

detected, amounting to 1 - 2 dB[2.lOJ to 6 - 8 dB [2-15].

According to some authors, the maximum values of effective

area (for varying positions of aircraft relative to the radar)

are smaller for circular polarization than for linear polar-

izaition. For aircraft positions corresponding to the minimum

values of' effective area for linear polarization, circular

polarization gives better results. The effect amounts to a

reduced effective clutter fluctuation [2.45].

A

Fig. 2.8. Effect of circular polarization in a station

14



operating with a 3 cm beam. A-photograph of the screen with
linear polarization, during heavy rain. B-photograph for the
same conditions, using circular polarization ;strong reflections
from the aircraft are seen, previously masked by interference.
Station Decca 424 Mark II, indicator range 5 mi. (about 9 kin)
[ 2.17].

In practice, improvement of the ratio of the signal
reflected from the aircraft to the signal reflected by

precipitation, with the use of circular polarizaton, amounts

to between 8 to 25 dB [2.15; 2.16], and in some cases even

30 dB [2.4].

Fig. 2.8 shows the effect of circular polarization in
the system Decca 424 Mark II, working in the 3 cm beam [2.17].

It should be noted here that the usefulness of circular

polarization depends on the wavelength of radar operation.

Since, as is known [2.16], the signal intensity of reflections
from clouds and raindrops is inversely proportional to the fourth

power of the signal wavelength, the interference due to

meteorological objects is much weaker for a radar operating at

longer wavelengths (see Chapter 5). This is illustrated in

Fig. 2.9, which shows photographs of two radar screens operating

simultaneously. One of them, operating at the 10 cm wavelength,

shows strong interference of a meteorological origin; the

other, operating at the 50 cm wavelength, gives an image

practically free of interference (in both cases linear polari-

zation is used)[2.18].
A

Fig. 2.9. operation of two different radars of the Marconi

15



company in identical, severe meteorological conditions

(heavy snowfall). A - station working in the 50 cm beam.

B - station working in the 10 cm beam [2.18].

In reference to the problems mentioned above, it should

also be noted that in order to achieve appropriate contrast,

it is necessary to carefully select the operating conditions

for the screen imaging lamp [2.20 and 2.21].

2.4. Selection by signal envelope

This chapter wil". conzIder those methods of signal

reception against a pn stve interference background which can

be used in devices ising a noncoherent system, i.e., with

detection by amplitude (signal contour).
1

The application of a visual amplifier with a low time

constant of coupling elements, which provides signal discrimina-

tion 2 , allows in some cases to improve somewhat the visibility

against the background of passive interference. Discrimination

removes the constant part of the interference, and accentuates

the signal to be detected [2.1;2.2]. Discrimination systems

cause some loss in the detectability of the signals, which may

reach 5 dB. In order to avoid this effect, more complex systems

are used with delay lines (with delays on the order of 10

lengths of the scanning pulse), which remove the "constant"

component of passive interference [2.50].

We note that all the methods based on the envelope may be

applied only when there is no over control of the stages

preceding the detector. Since stationary clutter may have a

1 The question of optimal pre-detection filters for indivi-

dual pulses in the presence of passive interference (Urkowitz
filter) will be discussed in Chapter 6.
2 In English literature this method is also termed FTC
(Fast Time Constant)
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very high intensity, (see Fig. 1.1) appropriate means should

be used to protect the receptor from overcontrol. One of

the methods used in this case is the socalled Instantaneous

Automatic Gain Control IAGO.1  This is a fast-acting system of

automatic gain control, in which a strong negative reverse

coupling is used with a time constant of the same order as the

length of the scanning pulse. Thanks to this, the amplitude

of the reflection pulses against the background free of inter-

ference is negligibly reduced, while in the areas of interfer-

ence the receptor is protected from overcontrol [2.1;2.2].

Another system used with the same objective (often in conjunction

with IAGC) is the so-called detector balance bias 2 [2.1;2.2].

Also, detectors with logarithmic characterisitics are used.

Application of such a characterisitic permits to bring the

signal fluctuations to the same level, and subsequent dicrimina-

tion allows the selection of the desired signal. The question

of the effectiveness of the operation of a logarithmic receptor

in signal detection against a background of stationary clutter

was considered in detail by Croney [2.22]; Fig. 2.10 is (taken

from this work) a photograph of the image on radar screen using

a logarithmic receptor and discrimination. A discussion of the

operating effectiveness of discrimination is also presented in

references [2.2 and 2.23].

The use of linear-logarithmic characteristics of the

receptor with coherent reception is discussed in Par III.

It should be noted that the means for increasing the dynamics

of the receptor are often supplemented by the STC system

(of Chapter 2.1).

In detecting objects whose dimensions are small compared to

English IAGC (Instantaneous Automatic Gain Control),

Russian MARU (Mgnovenna avtomaticheskaia regulaciia
usileniia).
2 English DBB (Detector Balance Bias).
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the effective size in space of the scanning pulse ,it is

possible in some cases to take advantage of the fact that
stationary clutter usually occupies a considerable area in
space. Thus, applying the so-called discriminator of pulse
length, which lets through only pulses of length similar to
that of the scanning pulse and suppressing longer pulses,

it is possible to obtain a certain reduction of stationary
clutter (of Fig. 2.11). A pulse length discriminator should
be preceded by a receptor which does not restrict the signals,
e.g. a logarithmic one [2.214].

Fig. 2.10 Effectiveness of logarithmic amplifier and discrimina-
tion. A -imaging obtained with a linear receptor. B - imaging
under the same conditions, but using logarithmic amplifier
and discrimination [2.22].

The use of pulses with too large a size is not useful in

detecting objects in the presence of pass-ive interference,

since increasing pulse length leads to (with interfering

objects interspersed in space) a decrease in the signal-to-
clutter ration, since the number of interfering objects
increases and causes possible interference within the area of
impulse reflection. Because of this, one should use scanning /23

E. g., at a scanning pulse length of 3 uis, the effective
size of the pulse -about 450 mn - is considerably larger than an aircraft.

18



pulses which are as short as possible

The use of such pulses may cause difficulties in reaching

the required range, since at peak power, limited for tech-

nical reasons, they may not have sufficient energy. In

some cases these difficulties may be overcome by applying

the method of pulse compression. In some systems operating

with a pulse length of 5 P~s, the use of linear frequency

modulation during the pusle time led to an pulse reflection

compressed to an effective length equal to approximately
0.1 us. This results in a reduction of passive interference

from meteorological precipitation of about 17 dB [2.45].

Fig. 2.11. Effect of a pulse length discriminator designed by
the Marconi Company. A - imaging without discriminator.
B - imaging obtained with discriminator.

The methods described above take advantage of the

properties of individual reflections, and not the entire
signal reflection, received in the process of space scanning.

1Radar devices have been 9constructed which use a pulse
negth lower than 1 ns (10- ), working at the 3 cm wavelength
[2.48]. Such devices have a range discrimination better
than 10 cm, which makes it possible to detect cars in
forst [2.49]; however, these radars have a low peak power.
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As can be easily noted, a change in the position

of an object from pulse to pulse can be detected on the

basis of signal envelope displacement only in unusual1
cases , because even for very fast object, this displace-

ment is very small2 . Thus one should rather consider the

possibility to using the change in position between

two consecutive cycles of space scanning, e.g. at a

station of circular observation, between consecutive
revolutions of the antenna.

The simplest method is just to use an imaging lamp

with an appropriately long illumination display, which

causes moving objects to leave a distinct trace
3
. This allows

tracking of moving objects even in areas with numerous

but small and isolated stationary clutter (cf Fig. 2.5 B).

This property of the display with a long illumination

duration gives an additional improvement of the detectability

of moving targets in devices for reduction of stationary

clutter are used.

The envelope of an echo composed of a reflection from

the object to be detected and of passive interference
may, in contrast, show relatively large fluctuations from
pulse to pulse, which are caused by changes in the relative
reglection phase. This was used to advantage in the so-
called autocoherent system (cf. Chapter 2.5)
2 E.g., for aircraft velocity of 600 m (about 2M) and

repetition frequency of 400 Hz, the displacement from pulse
to pulse would only be 1.5 m. This corresponds to a change
in delay of 0.01 ps.
3 E. G., imaging lamps with the luminophore of type P-19
(according to the U.S. nomenclature) (2.6).
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The use of two color imaging lamps has been suggested

in the past; here one luminophore would show up only after

repeated excitation, while the second would show up after

a short excitation. In this fashion stationary clutter

and moving objects would give rise to imaging in different

colors. However, this method has not found general use

because of relatively small effectiveness and difficulties

in designing luminorphores with good color and memory

propertis [2.25]. Recently this method has been considered

again in applications to devices with high discrimination,

which serve to scan airport surface [2.45].

Considerable system possibilities are opened up if,

in addition to imaging lamps with long illumination, special

memory lamps are used. It is impossible then to obtain two

or three-color imaging [2.26; 2.51], which clearly differ-

entiates moving objects. It is also possible to obtain

imaging in which a series of blinking dots moves along the

trace of moving objects, thus attracting the operator's

attention [2.27;2.52].

It is also possible, using appropriate memory lamps,

to produce a system of substracting visual signals between

revolutions of the antenna [2.16; 2.28; 2.29]. With appropriate

form of the receiving track and selecting radar parameters,

this method allows to reduce passive interference and to maintain
1the imaging of moving object reflections!
. The detectability

of objects against a background of stationary clutter which

continuously covers certain area is in this case considerably

curtailed because of the stationary clutter fluctuations,

which in most cases can be considered noncorrelated from

of
1 Since the period of antenna revolution is of the order I
of seconds in circular observation stations, the aircraft
displacement in space during this time is several hundred ;ers
meters or several km, at aircraft velocities of the order
of 1 M- 2 M.
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revolution to revolution (see Chapter 5). This method may, /25
however allow detection of objects in the presence of so-

called coded passive interference (which consists of indivi-

dual dipole packets dropped at certain intervals [2.30]

and other stationary clutter present in isolated, relatively

small area. Selection of moving targets can also be

achieved under similar conditions by systems with an automatic
numerical measurement of coordinated objects. I~n such

devices, an appropriate computer determines the velocities

of all objects being tracked; this method makes it possible

to discern between moving and immobile targets. If appropriate

extrapolating systems are used in the computer, tracking of
moving objects against passive interference may be facilitated
when the interference has the form of small isolated "islands"t.
However, it is impossible to detect -reflection signals when

passive interference exceeds these signals in intensity,
and other methods must be used [2.50].

2.5. Selection by Doppler frequency

One of the most effective methods of moving obje- t --lect,,"s

against a background of stationary clutter takes adva-'.k.ae

of the differences in the velocity of phase shifts of

reflections between desired and unwanted signals. The method

is easier to use for a situation in which the reflected

signal contains a distinct component with a Doppler frequency.

This is why this method is most frequently referred to as

being based on the Doppler effect, although in some cases,

as will be seen below, this name is not too accurate.

It is know that the frequency of the reflected signal

coming from an object moving with respect to the radar station

with a radial velocity v differs from the frequency of the

scanning signal approximately by (2.5.1) 2
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where f ... frequency of the scanning signal; C - velocity

of propagation of electromagnetic waves in space. The

frequency h. is often called the Doppler frequency (cf.

Chapter 5).

Fig. 2.12 shows the graph of the dependence [2.5.1]

which gives an idea of the order of magnitude of Doppler

frequencies. Since the objects giving rise to passive interfer-

ence are usually immobile or move considerably slower than objects

to be detected, there is a possibility of their effecti-.e

differentiation by using appropriate filters.

Radar devices which take advantage of the Doppler effect

may be generally classified as belonging to one of three

groups (cf.[2.13, Chapter 5; 2.29, Chapter 2]): a. devices

emitting a continuous wave; b. devices emitting pulse signals

with a high filling coefficient1 ; c. devices emitting a /'6

pulse signal with low filling coefficient.

A block diagram of the simplest radar device operating

with a continuous wave is sho,.n in Fig. 2.13.

V2 Q0M8 46 1 ai to affffl

Fig. 2.12. Doppler frequency Do as a function of the object's

radial velocity v and wavelength X.

1 Filling coefficient refers to the ratio of pulse length
to the repetition period. 23
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Fig. 2.13. A block diagram of a radar operation with contin-

uous wave. 1. transmitter; 2. emitting antenna; 3. damping

unit; 4. receiving antenna; 5. mixer; 6. amplifier;

7. filter; 8. screen.

In practice, amplification occurs at the intermediate rather

than the low frequency; this requires an additional local

generator , mixer, and intermediate frequency amplifier. How-

ever, this does not influence the basis of system operation,

and is required only for technical reasons (such as the noise

properties of semi-conductor microwave mixers). Therefore the

details have been omittted here.

The damp emitting signal with frequency f. is combined

in the mixer with a reflected signal with frequency 10

where f.±f,,,- Doppler frequency for a given object. The generated

differential signal is amplified and passed through a filter,

in order to separate the low frequency components, which derive

from passive interference. The signal frequency An at the /27

filter exit is fed to the screen, which may be constricted in

various ways, e.g. using deflection, acoustics, etc. As can

be seen from Fig. 2.12, Doppler frequencies are found in

the range of sound frequencies, and therefore acoustic signal

indicators are often used. Instead of a single filter, some-

times systems of narrow band filters are used, which in

addition to separating the signal better, also make it possible

to determine the Doppler frequency.
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The basic problem in constructing these systems is
obtaining appropriate stability of the transmitter

frequency [2.13, Chapter 5].

Devices of this type (often called - according to

the operation principle - Doppler radars) are characterized

by simple construction, good detection of moving objects

against a background of strong passive interference and

by the possibility of measuring the radiial velocity of the

object. They cannotmeasure the range to the object, nor

do they differentiate between objects with the same radial

velocity. Therefore, these devices have limited applica-

tion, for detecting moving objects and for determining

the velocity of individual targets. Examples of the latter

application are devices which measure the velocity of missiles

or rockets, police radars which measure motor vehicle

velocity, etc. [2.16, Chapter 3; 2.31].

In an attempt to remove the imperfections of simple

Doppler radars and still maintain good detection against a

background of passive interference, various methods of

emitter signal modulation have been designed. Of these systems,

the most widely used is the so-called pulse-Doppler system,

which uses pulses with high filling coefficient. Devices

using this method are built in many variations; to illustrate

this, Fig. 2.14I shows a block diagram of a typical radar

[2.19, Chapter 6].

This system also takes advantage of the Doppler effect.

Using a pulse emitter signal, it is possible here (with the

use of the NO system) to utilize a common antenna for

emission and reception.
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Fig. 2.14. A block diagram of a typical pulse-Doppler

radar.

1. pulse-time control; 2. control generator; 3. pulse

power amplifier; 4. modulator; 5. mixer; 6. gating

amplifier of intermediate frequency; 7. intermediate fre-

quency generator; 8. screen; 9. filter; 10. intermediate

frequency mixer.

In this device, the range of detection by distance is

subdivided into an appropriate number of gating segments.

The output of each of the gating amplifiers is passed onto

an appropriate filter system which selects the Doppler

frequency; in order to simplify the filters, so-called box-1
car demodulators are applied. Thus the range of the object

is determined by the gating segment in which the signal appear-

ed, and its Doppler frequency is defined by the filter system

C2.16; 2.19; 2.29; 2.32]. In order to improve the efficiency

of detection and filtration and to simplify the filter

system, a boxcar demodulator is used. Its operation is

illustrated in Fig. 2.15. Fig. 2.15a shows a pulse train

1 In the English literature boxcar demodulator [2.16].
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leaving a gating amplifier (i.e., at the input of the
boxcar demodulator system).Fig. 2.15b shows the output of
thi's system. As can be seen, the output signal is similar to
the modulating pulse series; however, the content of harmonic
components with frequencies equal to multiples of the
frequency of pulse repetition is rather small. The box car
demodulator therefore has the role of deftiodulating the
envelope of pulse series.

aLH~~..u.uii
lb

Fig. 2.15. Operation of a boxcar demodulator system:

a - input signal; b - output signal.

The pulse-Doppler devices with a high filling coefficient /29
make is possible to measure object range, but they have certain

imperfections related to the difficulty in achieving accurateI
measurements, low capacity for distance differentiation
with long pulses. There is also the possibility of ambiguous

distance readings. For these reasons they have also a

rather low capacity, i.e., they cannot provide imaging of too
many targets at once. On the other hand, they are character-

ized by effective detection against a background of passive

interference.

Similar devices have been applied, e.g., as onboard air-

craft radars, they are used in some cases for aircraft detection

and in detection of moving objects (e.g. soldiers, vehicles)

in the battlefield C2.16; 2.19; 2.32-2.35J. Pulse Doppler

radars allow in some cases to detect moving objects against
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a background of stationary clutter which is stronger by

70 to 90 dB[2.16].

The most commonly used scanning system in various radar

devices emit a pulse train with a low filling coefficient,

of the order of l0 - 3 . Radars designed on this principle

serve to direct and control aircraft traffic , to detect and

guide airplanes, to direct the firing of anti-aircraft weapons,

as onboard aircraft devices, marine navigation devices, etc.

The widespread use of this system is due to its advantages,

such as good differentiation and accuracy of range determina-

tion, ability to give simultaneous imaging of a large number

of targets, and rapid information gathering.

The most effective way of detecting moving objects against

a background of passive interference uses the information

contained in the phase of the reflected signals. Devices

based on this principle are called coherent-pulse. They bring

about a reduction of stationary clutter (TES)(MTI)1 [2.13,

Chapter 16; 2.16, Chapter 4; 2.29, Chapter 2; 2.36]. Radars

of this type can, for present level of technology, detect

moving signals against a background of stationary clutter

stronger by 20 to 30 dB[2.16].

The operating principle of the TES system will be des-

cribed first in a simplified manner, to give a general idea

of the phenomenon; next, a more detailed discussion of the

properties of relevant devices will be given.

I In English literature - Moving Target Indication MTI);

in Russian - Seleksiia Podvizhnih (or Dvizhuhchihsiia)
Tzelei (SPTS or SDTS); in French - Elimination d'Echos Fixes
(EEF); in German - StandzeichenunterdrUckung.
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Figure 2.16 shows a (considterably simplified) basic

block diagram of a radar station which allows the reduction

of stationary clutter. Let us consider the individual stages

in this system.

(a.) 0(W.

--- - (-- -

Fig. 2.16 Simplified block diagram of a pulse-coherent

radar (working with reduction of stationary clutter).

1. pulser; 2. pilot oscillator; 3. power amplifier;

4. indicator; 5. mixer; 6. emitting antenna;

7. receiving antenna; 8. detector (two-halves); 9.

compensating system; 10. amplifier.

The pulser modulates the emitter, which sends high frequency

scanning impulses into space. A small part of the emitted

pulse power is used to synchronize the so-called coherent

oscillator. This oscillator uses a frequency identical to

that of the transmitter1 , ard is, as mentioned above, syn-

chronized, such that each pulse of the transmitter imposes

a defined vibration phase.

In actual systems the coherent generator usually uses

intermediate frequency, but this does not change the basis
of operation, as discussed below.
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The pulse reflected by a target is received by a

receiving antenna, and then reaches the mixer. Mixing of

two vibrations, the continuous wave from the coherent

oscillator and the pulse reflected from the target, gives

a visual pulse, whose amplitude depends not only on the

intensity of the incoming high frequency pulse (as is the

case in ordinary radar stations), but also on its phase with

respect to COHO vibrations.

For stationary and nonfluctuating objects, the amplitude

as well as the phase of reflected pulses remain always the

same. Because of the synchronization, the phases of

transmitter vibrations and COHO vibrations are identical,

and therefore the mixer output always gives a constant reflect-

ion from a given stationary object.

The situation is different with a moving object. Even

when the amplitude of the reflected signal is constant,

the phase changes, since during the time elapsed from the

moment of scanning signal emission to the next emission, the

distance of the target from the station has changed. This

is why the visual pulse output by the mixer will have a

different amplitude during each cycle.

These relationships are illustrated in Fig. 2.17a-d.

They represent consecutive paths which would be seen on the

screen of the indicator A. As can be seen, some reflections

are stationary, while others are derived from moving targets.

In addition, a difference with respect to the usual image A

is seen; with coherent detection, visual pulses may be posi-

tive as well as negative.

In fact, because of the human vision inertia, the screen

I Abbreviation for coherent oscillator.
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of the indicator A shows many paths simultaneously, and

thus the image will appear as shown in Fig. 2.18.

The phenomenon described here raises the possibility

of differentiating between moving targets and stationary

ones. Devices of this type, which make possible the selection

of moving targets only, were used in radar stations (e.g.,

by Germans in the last phase of the war) to make the operator's

job easier.

0

Fig. 2.17. Consecutive

images on the indicator A

operating coherently.

Fig. 2.18. Image obtained on indicator A, operating coher-

ently.

The effectiveness of these devices is limited because

stationary clutter remains visible and distracts the operator.

In addition, since the image appears only on the indicator A,

the station cannot scan the space rapidly, which decreases

the tactical value of the method considerably.

Thus it is necessary to use systems which would allow

selection and reduction of stationary clutter. The screen

of the indicator will only show the signals frem moving
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targets.

The reduction of stationary clutter is achieved in the

following way. Let us draw the paths derived by subtracting

the diagrams 2.17a-d, namely: b-a(Fig. 2.19a), c-b(Fig. 2.19b),

d-c(Fig. 2.19c). As can be seen, stationary clutter is

eliminated, while the oscillating reflection of the moving

object remains.

Fig. 2.19. Subtraction of

consecutive paths.

The above principle is put into practice by directing

the visual signals to the subtracting system using two paths;

direct and through a delay line, with a delay equal to tte

repetition period of the pulses T (cf Fig. 2.16). ThisP
gives the desired effect, i.e., signals from the previcus

cycle are subtracted from those received in the current cycle,

as in Fig. 2.19.

As a result of subtraction, visual pulses are obtained

which may be positive as well as negative, while the indicator

is usually designed for work with pulses of one sign. There-

fore an appropriate rectifier is introduced between the sub-

tracting system and the indicator; the rectifier transfcrms

a series of negative and positive pulses into a series :f

pulses of the same sign (FIg. 2.20). These pulses are then

passed on to the indicator as in ordinary radar statIons.



9a

Fig. 2.20. Detection of b

pulse trains how a

Now that we realize how a coherent pulse station (MTI)

operates, let us go on to define more strictly some relation-

ships. Let us denote the vibrations emitted by the trans-

mitter during the first scanning pulse in the following way:

0 t < 1)
70 -q1  'T (2.5.2)T<t

where T - time of pulse duration.

The vibrations of a coherent oscillator, in accordance

with the previous observations, may be expressed as:

kt(tl = ,,2 cos t,. . ( .5.3 )

If the reflecting object is small, then the corresponding

reflected signal sl(t)received by the receiver will of course

have the form of a pulse of length T, appropriately delayed

with respect to the scanning pulse.

It should be noted that even if the object to be detect-

ed - e.g., an airplane - flies directly at the radar station

with a velocity approaching double the velocity of sound,

the change of the object's distance bet-een pulses will be

(at typical T --100U sec) only about 60 cm. Let us imagineP

a pulse reflected from a target shown on the indicator A.
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Let us assume, as an example, that the range of' the time base

is 50 kLand the indicator has an oscilloscope tube with

a 5 inch diameter, i.e. the length of' time base is about

100 nun. The displacement of' the reflection on the screen

between pulses for parameters given above would not exceed

approximately 0.001 mm. Such an effect would not be noticed.

Even using a more extended time base scale, the displacement /34

of' the ref'lection on the indicator would be extremely

difficult to detect, since for a typical pulse of' length

T =1 Pi the displacement between pulses would comprise

(with parameters as above) only about 0.004 T. T:hus it is

clear that the dif'ference in position of' the envelope of' two

consecutive visual pulses of' a reflection is practically of

no consequence; however, the phase of' the signal received (in

agreement with the MTI method of' system operation described)

is important.

Thus we wdill not use in further considerations the time

limits of pulse duration in the f'orm of' equation (2.5.2.),
which is cumbersome. We should remember, however, that we

are dealing with a pulse signal.

Let us assume that the distance of' a moving target is

defined by the function r(t). Then the reflected signal is
2r (t)

delayed with respect to the transmitter signal by c
In addition, reflection by a target causes a displacement of the

phase by an angle which depends on the object's properties;

these properties change with time, so that this angle may

change between pulses.

As a result the reflected signal will be expressed by:

(ha Cos jw.f --- ~j~(2.5.4)
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The vibrations of the coherent oscillator and the signal

are mixed. We assume in these considerations that it is

a mixer of multiplicative type, i.e., that the output signal

is the product of input signals. As we know, such mixers

are designed using appropriate nonlinear elements. In

accordance with well known trigonometric formulas, the

product of sines (or cosines) is represented as the sum

of sinusoidal vibrations with arguments equal to the sum and

the difference of the arguments of the product. Because

in our case these vibrations have identical or almost identical

fr~quencies, we will obtain a path with a small frequency

(Difference of the arguments) and one with a very high

frequency (sum of the arguments), The first path corresponds

to the visual pulses, which we want to isolate; the second

path is filtered out by an appropriate low-capacity filter,

as usual in detection.

As a result, a modulated visual pulse will be obtained:

u,(t) = conat -aa2 cos - ca,. t - - 'r, -1

a, o8 rQ) , ](2.5.5)

During tile second cycle similar events will take place.

However, since the second scanning pulse will occur after a

time Tp, we have to replace t by t-Tp in the appropriate

expressions for s(t) and k(t).

The second visual pulse will thus have the form:

, a, cos [ (2.5.6)
C
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Subtracting the first visual pulse, delayed by period

T, from the second visual pulse, i.e., ul(t - T p), one

obtains:

u2(t) - ult - Tp) = (44 cos (25.C (2.5.7)
[ 2w,,,r(t-Tp) ]

After transformation, we obtain:
.(t) )- 111(l) n,- 2,.il l - r(t - Tp}j

(2.5.8)
, - ,' - - -

Equation 2.5.8 represents the envelope (contour) of

the visual pulses at the output of the compensating system.

This formula allows to determine the basic properties of a

station equipped with a MTI system, and in particular, those

characteristics which differentiate it from an ordinary

radar station.

To simplify the discussion of eq. 2.5.8, let us consider

a simplified case, when ¢I = ¢2 = 0, a4 = const, and r(t) =

r0+ vt. This means that the properties of the target do not

change between pulses, and that the target moves with a

uniform radial velocity.

In this case r(t) = r(t-Tp) + vTp and as a result we

will obtain:

u,() - u,(t) = - 2a, sin 2r(t) - Tp] sia C (2.5.9)

that is,

u2t- us(t = - 2a4 sin[ . ( .
IC C C (2.5.10)

vw, T,

C

MWj 2v
Let us note that the quantity ~- -f, fD is the Doppler
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frequency for the case of signal reception after reflection
by a moving target (see note on Page 82).

Thus, eq. 2.5.10 may be finally written in the form:

whe re

In the case of uniform motion of the object, the

output of the compensating system will show a series of pulses,

modulated in amplitude (Fig. 2.20a), and the modulation

frequency is equal to the Doppler frequency defined by eq.

2.5.1.

It should be mentioned that in the literature one often

sees explanations of the operation principles of MTI systems,
based on the Doppler effect. In practice, the real motion

of the target can be taken as uniform, if a short enough time

period is considered. However, in discussing the basic

characteristics of MTI systems, an interpretation based on

the Doppler effect may sometimes lead to paradoxical reason-

ing because of the pulse character of the signal. This was

noticed by Bachmann [2.37], who gave examples of such
theoretically possible target motions, which give rise to

reflected pulses that will not differ in frequency from

emitted signals (and there will be no Doppler effect), but

which a MTI system can detect as belonging to a moving object.

He also gave examples of motions in which the reflected pulses

differ in frequency from those emitted by the Doppler

frequency, and still a MTI station reacts as if the target

were stationary, i.e., the reflection will be reduced1 In

1 This should not be confused with the so-called "blind"
velocities discussed below.
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general, it is more useful to apply the approach described

above, i.e., consideration of phase relationships.

Let us discuss eq. 2.5.11 introduced above, which

describes the output signal of the compensating system.

Because of the action of the two-part rectifier [e.g. 2.20],

the input signal on the indicator has the form:

U, ;const. sinl[2nf,(I+ -) + 00oj -14iII(_f 0 ) I (2.5.12)

As we see, the pulse series reaching the indicator

pulsates in time with a frequency corresponding to the /37

Doppler frequency fD (this is indicated by the first part

of the product - sin 2rft+-r-+ )

The maximum amplitude of the pulse series depends on the

Doppler requency and on repetition period (one should note

the second part of the product -i;f-TP).

It is obvious then, that the MTI station differs from

a conventional station in that the visibility of the reflect-

ion depends on the radial velocity of the object, among other

things.

As has been mentioned above, the maximum amplitutde of

the pulse series will be proportional to sin(r fDTp). A

graph of this function is shown in Fig. 2.21. It can be

seen that for some velocities the pulse amplitude equals zero.

These are the velocities for which the Doppler frequency is

equal to an integral multiple of the repetition frequency.

It is easy to see that for such Doppler frequencies the

condecutive visual pulses at the receiver output have the

same amplitudes. Such an object therefore gives stationary

clutter which is reduced by the MTI system similar to a non-
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moving object.

Fig. 2.21. Amplitude of a
reflection pulse series at
the output of MTI system, as -

a function of Doppler fre-
quency of the reflection.

This effect may be justified in another ,more direct

way, using an example. Let us assume that an object moves

in such a way that it travels a distance exactly equal to

X between consecutive pulses. Because the transmission is

& o-way in radar, the difference in the phases of signals

reflected during consecutive impulses will be 3600. As a
result we will obtain a reflected vibration indistiguish-

able from that of a nonmoving object, and such a reflection

will be completely reduced. The radial frequency which

will cause a signal derived from a moving object to be reduced

is called "blind velocity". In agreement with the above

remarks, it will be:

Vl= W ,- (2. 5.13)
2T, 2

where n = 1,2,3..

The blind velocities may be determined using a nomogram

for Doppler frequencies, namely by finding the velocities

which correspond to the Doppler frequencies equal to integral

multiples of the repetition frequency. /38

The notion of a "blind velocity" obviously makes sense

only for reflections with a distinct Doppler compu-ent. For

objects with strong amplitude fluctuations or random phase

fluctuations (cf. consideration of the properties of signals
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reflected by objects, in Chapter 5), the effect of blind

frequencies is weaker [2.38], but in many practical cases

it lowers the sensitivity.

In order to avoid this effect, an alternating repetition

frequency is used most often, but this requires a more

complicated apparatus (see Chapter 10).

For good functioning of a coherent pulse device, high

stability of generation must also be maintained. Figure 2.22

shows a block diagram of a coherent pulse station which assures
2

a high stability of operation 2 . This system is used in the /39

most advanced devices. Previously, when appropriate micro-

wave pulse high power amplifiers were not available, the most

wide-spread practical system was one with a coherent oscillator,

whose block diagram is shown in Fig. 2.23. This system can

use a self-induction transmitter, which is induced from
pulse to pulse with a random phase, e.g., magnetron 3 . As the

reference vibration one uses the vibration given by the

coherent oscillator, which is phased each time by the trans-
mitter pulse, and thus "remembers" the phase of the scanning

signal. Otherwise, the principle of operation of this system

is identical to the previous one (2.13)

This method was proposed by the author, among others,
and used in the area control station "Avia" at the Central
Airport Warsaw-Okecie (2.39).
2 The Doppler frequency oscillator GD allows the compensa-
tion of uniform radial object motion; this is important
when interfering objects are carried by the wind (this part
of the diagram is therefore called the wind compensation
system), or when the station itself is in motion.
3 The reauirement of frequency stability during and between
pulses is still in effect.
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We should mention briefly the so-called autocoherent

operation of MTI devices. Such systems do not use the phase

of the scanning signal as a reference by the phase of the

passive interference itself C2.13]. The reflections from

stationary objects play here the role of a coherent /40

oscillator.

()t' (z6 Atdq

Fig. 2.22. A block diagram of a coherent pulse radar with
externally induced transmitter. 1. pulse-time; 2. pilot
oscillator; 3. pulse power amplifier; 4. NO; 5. antenna;
6. modulator; 7. mixer; 8. screen; 9. high frequency oscillator;
10. intensifier; 11. GD; 12. single-band modulator; 13. phase
detector; 14. two-part rectifier; 15. compensation system.
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Fig. 2.23. A block diagram of a coherent pulse radar with a
self-inducing transmitter and a coherent oscillator. 1.
pulse; 2. transmitter; 2. NO; 4. mixer; 5. stable, local
oscillator; 6. mixer; 7. indicator; 8. coherent oscillator;
9. amplifier; 10. GD; 11. single-band modulator; 12. phase
detector; 13. full-wave rectifier; 14. compensation circuit.

The station therefore will not have COHO, hence, the (some-

what inaccurate) name for the method. The refelctions from

moving objects interfere with stationary clutter and result

in a reflection which fluctuates with respect in amplitude

between pulses at the position of the moving object. Thus it

is sufficient to introduce, after the amplitude detector,

a compensating system identical to the one described previously,

in order to reduce stationary clutter. The autocoherent

system has important advantages in the case when the radar

station or the interfering objects are in motion, since it

assures automatic compensation of Doppler frequencies for the

interference. Its disadvantage is that in areas where there

is no passive interference, even the objects to be detected

are invisible. This may be circumvented by using a receiving

system which uses conventional methods (i. e., with amplitude

detection, without reduction of stationary clutter) in areas

where passive interference is absent. However, if the inten-

sity of interference exceeds some defined level (within a

time interval appropriately longer than the duration of the
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refected pulse from a point object), autmatic switching

off the receiver to the autocoherent system MTI will occur

Other systems have also been devised,, intended to combine
the advantages of the coherent and autocoherent systems; not

all of' them are, however, evident [2.'40].

It should be noted that in order to improve the detect-
ability of' signals against the background of interference, so-

called quadratic reception (described in detail in Chapter 6)
may be applied. But this requires, among other things, a
doubling of the filtering systems for the signals (compensating

system), which causes serious technical problems. Therefore

this complication is often avoided in actual radar stations.

The manner of operation of a coherent pulse station

described above presents the effects in a simplified fashion.

In reality, "stationary clutter" fluctuates considerably, and

is modulated because of the movement of the antenna in the

course of space scanning; both of these factors strongly

influence and lower the effectiveness oil ob-lect detection
against a background of passive interference [2.13; 2.16; 2.41].
Because of this it is necessary to optimize the system taking

into account the properties of the signals and the interference

using statistical reception methods. This problem is considered

in Part II of the present volume.

The coherent pulse method of stationary clutter reduction

is one of the most effective methods used to detect objects

against a background of stationary clutter.

Fig. 2.24 repre'sents photographs of the screen P of an
2area control radar station of type S 264 (Marconi Company)

which has a high efficiency of stationary clutter reduction

1In English literature so-called clutter switching [2.45].
2 This device is described in the next chapter.
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using the coherent pulse method. This method is also one

of the most effective means of combating man-made passive /42

interference [2.30; 2.42-2.44].

/41I i

bI

Fig. 2.24. Operation of the MTI system in S 264 type station
of the Marconi Company. A - photograph of the screen using
the amplitude method-i B -photograph of the acreen using MTI
systems.

For these reasons this colume considers mainly the pulse

coherent system of stationary clut"'er- reduction, called in

abbreviation MTI, In particular, "he technical aspects of the
MTI system are considered in detail in volume II.
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3. Examples of design of radiolocation devices which

use stationary clutter reduction

is 265-550 Hz, the width of the beam in azimuth is about 2.1. /46

A "packet" of echo pulses reflected from a point object thus

may consist of about 9 to 19 pulses [3.5]. The effectiveness

of stationary clutter reduction of the radar described is

illustrated in Fig. 2.24 (also see [3.6]). MTI systems for

this station will be described in Part III.

Two devices described above represent different design

trends. One of them mainly us,es antenna characteristics in

elevation for reducing stationary clutter, the second - uses

a coherent-pulse system. We will describe a radar which uses

both methods simultaneously. This is the ARSR-2 of the Ray-

theon Company [3.7]. It operates at 23cm wave. The elevation

characteristics of the antenna differs from the conventional

characteristic of the "cosec type, which leads to an improved

target detectability against field reflections and adjust-

ment of the influence of STC (of. Chapter 2.2, Fig. 2. 3]. The

antenna can operate with linear or circular polarization. The

station also uses stationary clutter reduction by the coherent-

pulse system.

PAGES 44-45 MISSING FROM ORIGINAL
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Fig. 3.2. The antenna of the type S 264 radar s-azion of
the Marconi Company.

For the final stage in the transmitter, a high power amoli-

tron intensifier has been used. The radar operates wih a

triple alternating repetition frequency and with a triple
1. hcompensation system with feedback . Figure 3.3 shows the

sequential effect of some systems on the visibility on 7he

screen, under conditions when echoes from both met=orolo:.- ai

and field objects are present [3.7]. / 7

The antenna of the ARSR-2 radar revolves at 5 RP?, the

average repetition frequency is 360 Hz, the width of the team

in azimuth about 1.20; a "packet" of pulses of the entire

echo reflected from a single target thus contains about ia

pulses [3.8]. The MTI systems of this station will te des-

cribed in somewhat greater detail in vol. I.

A similar approach has been also utilized in the CR-3

station of the CSF Company, which also operates at 23cm; this

station iffers from the ARSR-2 radar mainly in that it

The usefulness of such a system will be clarif ed in

Chapters 7, 8 and 10.
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Fig, 3.3 Influence of some counter-interference systems on
the visibility on the screen of a ARSR-2 radar station type
of the Raytheon Company: A-amplitude operation, severe
meteorological conditions; B-circular polarization, same
condfitions; C-circular polarization and MTI, same conditions;
D-circular polarization, MTI and STC, same conditions.

operates with a spectrum of frequencies (diversity) and

utilizes an MT! system with double subtraction and modulation

of the frequency of pulse repetition. This is possible be-

cause memory tubes are used (3.9). The technical solution of

MTI systems of this station will also be discussed in part

III (volume II).

Over the last few years, so-called "three-dimensional" /49

(3D) radars have found more widespread application. They

simultaneously determine the azimuth, distance and altitude of

the targets. As mentioned in Chapter 2, in some solutions of

such devices the reduction of stationary clu-,er caused by

field objects is made easier because of the hizh resolution of

the antenna system in elevation. W.-e will describe briefl y the

means of reducing stationary clte sdi n ftenws

stations of area control of the AEI Company, type 4502. This

50



joo -A-a r.ai

Ag t 1

Fig. 3.4l Stationary clutter reduction in lateral lobes of
the upper beam of multiple-beam radar: a. visual signal at
the output of the receiver of one of the upper beams, b.
visual signal at the output; of the receiver of the lowest
beam, c. gating signal, d. visual signal at the output of
the receiver of one of the upper beams (compare with a),
after stationary clutter reduction from lateral lobes.
1. threshold of aircraft detection, 2. threshold of opera-
tion of the gating system for upper beams, 3. Threshold of
aircraft detection, 4. range of gating for the 1st beam,
5. threshold of aircraft detection.

is a three-dimensional radar operating at 10cm using a

multiple-beam system. A total of 12 beams is used, and each

of the 7 lower beams has an elevation width equal to 10.

Because strong stationary clutter penetrates into the receivers

of the upper beams through lateral elevation lobes, a special

51
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system has been used to reduce the visual signal at the out-

puts of the receivers of upper bean-s, if the signal at the

output of the receiver of the lo,:est beam exceeds a defined

threshold (Fig. 3.4).

This radar also uses another means of reducing passive

interference, namely pulse compression([3.10]; see also

Chapter 4.1). Emitted pulses have a length of 5 iS, but by

applying linear frequency modulation during the pulse (with

a deviation equal to approximately 101.Hz) an effective pulse

length of about 0.1 ,.kS can be reached. Thus, a reduction of

passive interference by about 17dB is achieved (for uniformly

distributed passive interference, such as raindrops or snow-

flakes). In order to further improve the visibility against

a background of reflections from rain, this station also

utilizes circular polarization [3.11].

,~/

--- . 1- . .

I - ; ' . .-

Fig. 3.5. Antenna of the multiple beam radar of type 4502 of
the AEI Company (3.13).

The antenna of the radar AEI type 4502 rotates at a speed

of 12 rpm, the repetition frequency is 300 Hz, the width of

the beam in azimuth is about 0.560; a "packet" of pulses of the
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echo reflected from a point object therefore contains about

2-3 pulses (3.12).

The antenna system of the station described here is shown

in Fig. 3.5
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LI. Outline of the theory of signal detection systems /51

operating against a background of correlated interference.

4. Methods of radiolocation systems optimization.

The problem of optimization of the detection process is

especially complicated in radar applications because of the

various requirements which the radar devices must fulfill

simultaneously. The choice of a particular system depends

on the requirements on range, resolution, accuracy, quantity

of objects detected simultaneously, rate of data gathering,

detectability against the background of correlated inter-

ference, etc. Reaching an acceptable compromise to satisfy

various, often opposing requirements, is a difficult task.

Two groups of problems may be distinguished in this con-

text: first, the problems of optimization of signal gathering,

which boils down to designing the scanning signal. The para-

meters considered here most often include the requirements

with respect to the resolution and accuracy of the measure-

ment of coordinates at closer range, which has to be satisfied

at a high signal-to-noise ratio. The second group consists

of problems arising at low signal-to-noise ratio. A typical

question here is the determination of the detection range and

its maximization by optimizing reception. These groups of
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problems are of course interrelated, but in practie most

often (especially when many different requirements must be

fulfilled simultaneously) the scanning signal is determined

by the resolution and accuracy requirements at a relatively

high signal level compared to the noise. The optimization

of reception is then carried out for a determined scanning

signal.

We will consider here mainly the problem of sig-nal

detectability. Because of the problems mentioned above, we

will start by discussing the factors which influence the

choice, of the scanning signal in terms of object resolution.

As will be seen below, on the basis of these considerations

one can also reach some conclusions about selection of various

signals against a background of correlated interference.

4.1 General discussion of the signal selection problem. /52

Various radar systems take advantage of different kinds

of scanning signals and are used in practice, as indicated in

the previous chapters. This chapter describes the problems of

scanning signals. It is presented heuristically, as an intro-

duction to a more detailed analysis of the problem of signal

detection against a background of correlated and noncorrelated

interference, which will be considered in the following

chapters.

As mentioned above, a very important factor in considering

scanning signals is the potential resolving power (resolution).

This problem will be discussed first with the assumption that

the noise is not correlated. In the case of determined signals,

the optimal receiver iZ then a system which calculates inverse

correlation function of the received and (appropriately

delayed) scanning signals "4.l]. At a high signal-to-noise
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ratio the influence of the noise may be neglected. The

signal at the output of the optimal receiver thus has a

form similar to the autocorrelation function of the scanning

signal. One may expect that two signals differing by a delay

in time (e.g. echoes from two objects situated at different

distances from the radar station) will be distinguished, if

the difference in their arrival time Ar;) is large enough to

cause the value of the signal autocorrelation function

x (0) [4.2]. A similar situation is found in the difference
1

of Doppler frequencies. Because of this, the resolution of

a radar device is related to the two-dimensional autocorrela-

tion function of the scanning signal. If the scanning signal

is written in the form Relw(t)e'), , then this function is

defined by:

df
S f w(t) zv(t + T) e- 'a a,

where w*(t) is a function coupled with w(t). Woodward con-

sidered the properties of the function

(4.1.2)

He showed that [ 4.2 ]:

ff !(-r, a)dTdD (2E~'= - ,u (43)

where E - the energy of the scanning signal.

'A more general case is discussed in ref. ['.3].
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Relationship 4.1.3 indicates that, among other things, /53
it is not possible to obtain simnultaneously high resolution

1with respect to distance and velocity , because by narrowing

down the function V in one axis direction, it will be

spread out in the other dimension as follows from 4.1.3.

Relationship 4.1.3 is sometimes called the "radar uncertainty
2

principle," and the functio. .1 the ambiguity function

The constraints on the basic operating properties of some

radar devices, described in Chapter 2, are a practical con-

sequence of these properties of the ambiguity function.

aQ C

Fig. 4.1. Cross sections of ambiguity functions for a signal
in the form of: a-short pulse, b-long pulse, c-long pulse
with linear frequency modulation.

The properties of function 7/' were considered by

Woodward as well as by Siebert [4.4; 4.5] and Lerner [4.6]

among others; recently, a certain generalization of this

function was presented by Urkowitz, Hauer and Koval E4.3].

As an illustration let us consider the examples shown in

Fig. 4.1.

Fig. 4 .1a. shows a cross section of the ambiguity function

(at half-maximum value) for the case of a signal in the form

of a short pulse with constant frequency. As we see, for

objects (approximately) distant by less than T, the pulse

Qcorresponds to the difference in Doppler frequencies, and
thus to the difference with respect to the target velocity.

English: ambiguity function.
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duration will not be distinguished along the . axis. On the

other hand, objects distant by less than 1: -I' cannot be

distinguished along the Q axis. These relationships are easy

to understand on the basis of simple physical interpretations.

Fig. 4.1b shows a drawing for a long pulse with constant

frequency. As expected, this case gives a poorer resolution

in terms of distance, but a better one in terms of frequency.

Finally, Fig. 4.!c shows the cross section of the

function for a long pulse having linear frequency modulation.

As we see, in this case it is possible to obtain increased

resolution at the cost of spreading out of the signal band.

This effect has been utilized in systems with so-called pulse

compression [4.7].

Because of the fact that passive interference arises as /5 4

a result of reflection of scanning signal from objects disper-

sed in space, one can interpret the problem of useful signal

selection against a background of passive interference by

analogy, as being related to the resolution problem. Stewart,

Westerfield and Prager have analyzed this problem, mainly in

the context of applications in sonar ranging, and considered

scanning properties for individual pulse sig:nals (4.8; 4.9).

These considerations cannot be accepted as a complete discus-

sion of the problem because the influence of noncorrelated

interference was omitted, but they lead to an informative

presentation of some aspects of the resolution problem in terms

of the form of the scanning signal. Therefore below we will

discuss in a brief, heuristic manner, the characteristics of

detectability of both single- and multiple-pulse signals

against a background of passive interference.

As shown by Westerfield, Stewart and Prager (4.9), the

signal-to-noise power ratio at the output of an ideally
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adjusted filter may be presented in the case under considera-

tion in the form:

T J, J'E(ro + r') IFqr'; Q') dr'df2'
S./Ye. =(5o/N0) ....

f f E(rT . T; .0. + Q) VP(r; 12) &C (1

where

S0 N - signal-to-noise power ratio at the filter input

P(t;Q) - function defined by eq. 1.3.3;
T - duration of the scanning pulse;

E(+ r;go +Q) - distribution of the average

reflection energy, caused by
passive interference, as a
function of variables T and Q
(which correspond to echo delay
and Doppler frequency):

- average energy of reflections

caused by passive objects located
between distances

CT ck r - .lA )

and ----- -

E(T + r; + 12) AD -average energy of reflections
caused by these objects, contained
within the said layer, whose

Doppler frequencies are within
the interval between a and

The output ratio of the signal to noise is greatest when

the overlap of functions E and W, in the r,a plane is

smallest, because of the expressions in the denominator of

eq. 4.1.4. This is shown graphically in Fig. 4.2. Fig. /55

4.3 shows the cross sections of the ambiguity function at a

defined level for different types of scanning signals: D-for

a long pulse; K-for a short pulse; FM-for a long pulse with

frequency modulation. Other symbols in the figure: T-effec-

tive pulse duration; W-effective width of pulse band. The
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shaded area in the same figure represents the cross section

of function (rr. S2-) for -.", corresponding

to coordinptes of point / [4.8],

~i

Fig. 4.2. Graph illustrating Fig.4 .3. Pulse selection
relation 4.1.4 at correlated, wide-band

interference.

For the case shown in Fig. 4.3 the effective Doppler width

of the passive interference band, b, is larger than the reso-

lution in frequency 1/Td, attainable when a long pulse is used;

whereas the effective time, a, is smaller than the resolution

in time (which corresponds to resolution in distance) l/Wk

attainable when a short pulse is used. Fig. 4.3 leads to the

conclusion that in order to cover the echoes originating from

targets B and C, the best pulses are short ones (K) because

they allow to distinguish easily the objects beyond the area

of interference. The same is true for a pulse with frequency

modulation (FM) with a band width identical to that of pulse

K. However, if the maximum value of the Doppler frequency for

detected targets does not exceed +d, then the targets situated

at the same distance as target A will not be selected (cf.

point D). They can only be detected if their reflections are

sufficiently large compared with the passive interference.

Conclusions concerning the signal-to-noise ratio for various /56
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C. he best. This can -- also .

for distributions with a very lonS axls 't, he character of

the interference begins to approach more and mcre that of

whi4e noise, and in -his case it is wel- known hat it

advantazeous to uise on .ulses ar.d narrow tands for eer7y

reasons. A mathematIcal treatment f th s"aln-t.-no-ise

ratic problem using the ambiguity function as outlined abcve

is oresented in the cited work of Westerf'eld, ra-zer and

Stewart [4.9].

Fig 4.4 represents a situation which cc-urs with cassive

interferenc3 of a different distribution. The case presented

here is typical for radar because passive interference usually

extends over large areas, although its fluctuation is rela-

tively narrow-band. For moving target detection it is best

then to apply pulses sufficiently long so that for objects

with high enough Dofpler frequencies (which in this case repre-

sent most targets) maz.e it possible to obtain the minimum over-

lap of functions E and Y (cf. Fig. 4.2. This indicates

the usefulness of applying Doppler radars (operating in con-

tinuous wave) or oulse-Doppler (with long pulse), in this case,

which allow target selection thanks to their hIxh resoluticn

in frequency. However, if it is impossible to apply pulses

sufficiently long because of requirements with respect to

resolving power, then, as shown in Fig. 4.4, the scanning ulse

should be relatively short, or an FM pulse with an aporopriate



bandwidth should be used. This Then gives a relativelys

overlao area of functions E and 1Y (a-Though usually lar-

than in the case of long pulses and high Doppler frequen ,

when the functions are "spread out"). This problem is di:-

cussed in more detail in refs. [4.9, L.28].

The advantages of FM signals, resulting, among other

7:hings, from the above considerations, have been utilized in

radar systems with "pulse compression" mentioned above r . ,

(see also Chapter 3).

Uo to now we were concerned scanning with individual

pulses (or scanning without correlation between pulses).

Such a method (as indicated in Chapter 2) is not effective
for systems with a low filling coefficient. This is a r

of the interrelationships between the values c' tarameocro

involved. In order to select an echo pulse of length T.

against a background of passive interference with a Dooler /77

band width b using differences in frequency, the echo simnal

must have (as shown in ig. ) a Doppler frequency at 1east

of the order of (b + I/Td In radar, the width of the f-

tuation spectra of cassive interference are of the order

tens of Hz (cf. Chacter 5> , while the Doppler fretuenc tes

encountered in practice are uually within the range of souno

frequencies. As can be easily noted, in order to satisfy the

said condition of selection, -he scanning pulses would have

to have a duration time of the order of milli-seconds. Pulses

of such length may be used -ly In some pulse Doppler devi2es.

However, scannln-- pulses of radars operating on a coherent-

pulse system usually Jo not exceed 6u because of the

resolution and accuracy of the measurement. Still, several

o several tens of echoes from the target are obtained durin -

the time corresponding to the illuminatIon of a single target

6Operating without pulse compression
62



by this type of radar in the course of space scanning (i.e.

during -he time corresccnding to the dislacemen , of antenna
2

characterlstic in space by a bundle width).

f M

T-7

Fig. 4.4. Pulse selection with correlated narrow-band
interference.

This fact is used in -he pulse-coherent me-hod to obtain

signal selection against a background of passive interference;

the principle of operation of a similar system has been des-

cribed briefly from a technical standpoint in Chapter 2, and

below we will present an outline of the analysis of this .rc-

blem using the Woodward ambiguity function, in a manner

similar to that presented above for individual scanning pulses.

Figure 4.5b represents a graph of the cross section of -he

ambiguity function of a modulated series of scanning pulses,

i.e. of a pulse "packet" [Fig. 4.5a], which occurs during

space scanning in the manner described above (also see Chapter

5). Similarly -o Figs. 4.3 and 4.4, the area representin;

the typical for this case iist'rbuticn Df energy reflected

rom passive interference has been shaded. As can be seen,

the ambiguity functlon of a pulse "packet" assumes a rather

comlicated form, ,ihic ' , however, has scte soecl fic prcperr s

- tyo-cal exarne fir w m ra r: ~nwi beam width 1-
rezetit on frqec n r- r , cc> ,oIon velocity S

rpm, I0 pulses fall Ii-n> :- c.with, i.e. a single
target gives I) suo-essve t nit.



which facilitate the selection of a signal from oassive

interference.

o 0 0 0

* 0 . ~ 0:

Fig. 4.5. a - envelope of a pulse "packet", b selection
of a oulse "packet" in the presenuce of correlated narrow-
band interference.

The width of individual elliptical cross-sections of the

ambiguity function in the domain of frequency is related in

this case to the duration time of the entire "packet", in

other words - to tht number of pulses falling onto the beam

width. Since the effective width of an indivijual cross-

section in the frequency domain is of the order of I/Ta

where T a-effective duration time of a pulse "packet" (time

during which the antenna revolves by an angle equal to the

beam width), in order to select the signal it is sufficient

that it haie a Doppler frequency different from nT_ (where 9

n=Q,,2... , and T -repetition frequency) by more than about

b + i/Ta). In practice, time Ta is cf the order of mill-
seconds. With narrow-band interference, high repetition c'f

frequencies and long pulse "packets" there exists the possi-

bility of effective selection of most echo signals against

a background of passive interference. These conclusions are

fully confirmed in practice, where to obtain good detectabi-
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!ity against a background of passive interference, repetition

frequencies as high as possible are used, and the station

parameters are chosen such That the highest possible number

of pulses falling onto the beam width is obtained.

It should be mentioned that the specific form of the

ambiguity function represented in Fig. 4.5, which has many

maxima, leads to the possibility of obtaining ambiguous

measurements of both the distance and the velocity of the

target [14.32].

Concerning the unambiguous measurement of distance, this

problem is well known in pulse radars. Ambiguity is avoided

by assuming such a repetition frequency that the pulse repe-
tiion period is larger than the maximal possible time of

e uo return (defined by the range of a given device). When

the only goal is the detection of object against interference

background (in warning devices, serving in air traffic con-

trol and direction, guiding, etc.), ambiguity in the coordi-

nate direction is not imp,_,rtant, because in this case the

velocity of the object is not measured. In some pulse-

coherent devices, where an accurate velocity determinaticn 4s

necessary (automatic devices tracking rockets) the ambiguity

is eliminated by introducing a two-stage measurement; approxi-

mate - on the basis of the change in echo envelope delay i.e.

delay of visual signal) and accurate - using the Doppler effet.

In summary, on the basis of an analysis of the ambiguity

function it is possible to reach qualitative conclusicns abou7

the resistance of various scanning methods to passive inter-

ference, and this analysis provides better insight into the

properties of various tracking systems known from practice,

and allows to reach conclusions concerning the choice of para-

meters for a device used for specific purpose.

65



Obviously, this suggests the future possibility of

defining the optimal form of the scanning signal which

maximizes detectability against a background of correlated

interference for defined conditions for resolving power

distance, time of target observation and signal energy.

However, this problem is very difficult and so far has been

solved only for some simpler cases (see Chapter 4.2).

The considerations contained in this chapter lead to a

confirmation of the potential possibility of target detection

in the presence of passive interference by using the pulse-

coherent system, widely used in radar.

This system provides a high resolution and accuracy of the

distance measurement and imaging of a large number of /60

targets. The analysis of the ambiguity function of coherent

pulse "packet" indicates, among other things, the necessity

of assuring a high enough number of pulses falling onto bundle

width in order to obtain good detectability in the presence

of stationary clutter. In many important practical situations

this is difficult to achieve because of conflicts with the

requirements often set for radar devices in terms of the range

and rapidity of measurements. The problem of receiving system

optimization then becomes even more important.

4.2 Optimization of signal detection

As suggested by the previous considerations, in detection

of objects by radar, the finite signal-resolving power of the

system must be taken into account. Thus, if the system's

resolving power with respect to one of the i parameters char-

acterizing the object equals Ei , and the range of values

that this parameter may assume is denoted i, then, obviously,

the maximum number of objects distinguishable on the basis of
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this parameter will be N' ,% The total number of

objects that can be distinguished (imaged) by a given radar

device, therefore does not exceed the number:

N V j (Z' 10),

where I - number of all statistically independent parameters

of the object, measured by the device.

As an illustration let us consider the example of a radar

device serving in control of aerial situation; the resolving

power of this device in terms of distance will be and in

azimuth - E a' With a determined direction of scanning the

station cannot of course give imaging of more than

N ~ objects, where R - the maximum range ofmax
detection.

On the other hand, with a determined distance it is

impossible then to obtain imaging of more than X=

objects. Stations of this type do not measure the height

(elevation angle) of the object or its velocity. Therefore

the maximum number of objects that may give unambiguous
.N 2xRnacimaging will be N-NN=

It should be mentioned with respect to the example above

that there is the problem of object displacement. For a

typical revolving station the velocity of scanning in azi-

muth is approximately 5 - 10 rev/mmn, the width of antenna /61

is 1-20, and the resolving power in terms of distance is 1150-

750 m (which corresponds to a pulse length of 1-5 p-5..). The

time of illumination of a single object equals, for the para-

meters given, about 0.017 - 0.067 sec. During this time an

airplane moving at the velocity of sound will be displaced in

space by about 6 - 24 m; thus, the object displacement during

the time of its illumination may be ignored, since it is much
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smaller than the resolving power in terms of distance.

The problem of object detection by radar methods, con-

sidered in the present work, may be therefore reduced to the

problem of creating a quantified imaging of the position of

these objects.

In this case we have a possibility of reducing the

detection problem to a system of N independent decisicns whi2h

determine if in each of the N segments of the quantffieI mage

we should accept the presence or absence of objects; in what

follows, it will thus be sufficient to consider the problem

of binary decisions with a defined position of the object.

A method based on the theory of statistical decision

functions of Wald [4.10]1 is considered the most advanced.

This method has found widespread application in problems of

signal detection; the optimization criterion is the achievement

of minimal loss while making the decision with respect to sig-

nal detection (see also: [4.11; 4.1; 4.12; 4.13]).

Definition of decision, loss, risk

and formulation of the optimization problem

In every transmitting-receiving system one has to conclude,

on the basis of the signal received, what kind of information
2

has been transmitted by the source of information. Because

of unavoidable effect of interference this deduction cannot be

carried out with absolute certainty. To stress the somewhat

IA brief history of the theory of signal detection and the
characteristics of its various directions may be found, e.g.,
in the preface of L.S. Gutkin, contained in a collection of
articles: "Priiom signalov pri nalichii shuma", Moscow 1960.
2A classification of the kinds of information and a more de-

tailed discussion -f their properties can be found in the work

of Seidler [4.1].
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arbitrary nature of reaching- a conclusion in this 2,ase, such

a conclusion is referred to as decision.

Decisions may be of various types [4.1].. In the present

work we will consider a decision the information belonging

to the information set X, and denoting it x*; according to

the definition cK

The principle, according to which every signal received

y belonging to the set Y corresponds to a decision from the

decision set, is called the decision rule. /62

Since we are dealing with a large variety of decision

rules, a basic problem emerges of defining criteria which will

allow to accept one rule as being better than another, and in

particular will allow to select the best rule from amongst

all the possible ones.

Let us note that information is transmitted from the source

of information to the destination to cause certain actions by

the user of the communications system. If these actions are

,arried out assuming that information x* had been transmitted,

while in fact information x was transmitted, then the actions

will not be the most advantageous, and the user will suffer a

loss because of bad operation of the communications system,

and this loss may be measured quantitatively. Therefore in

principle the user of the communications system should give

to the system designer in advance a function of two variables

L (x, x*) which is the loss generated when action is taken as

if information x* had been transmitted, while in fact it was

information x that was transmitted. This function will be

called, briefly, the loss.

Loss is defined in economic terms and the methods for
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determing loss essentially are not part of communications

theory. Often, however, the definition of loss is left to

the communications system designer and then the choice is

made more or less arbitrarily. E.g., for binary information

form the set X2, the loss is defined by four numbers:

L(',, x,) L(.X0 ..)

Information x will be called "lack of alarm" and information

x2 - "alarm".

Number L(x,,.. has the meaning of loss generated in the

case when the receiving device gives an alarm signal when it

was not in fact transmitted. Therefore it is a loss resulting

from a false alarm.

Number 1.r,) has the meaning of loss resulting from

a lack of alarm. Generally one has to assume of course that

L(,.<,) < I1x.,x,), but one cannot disregard the loss L(x,z2 )

since false alarms are also to be avoided.

Numbers L(.r,, ,) and have the meaning of

costs of corrective decisions.

The loss is defined for the decision and for the infor-

mation in a manner independent of the decision rule. These

two notions may be related and lead to an evaluation of the

quality of the decision rule. We will consider here one of

such possible relations which comes to mind when information

and decisions have defined frequencies of occurrence, in other

words, if they can be treated as realizations of random var-

iables with defined probability distributions. Then it is

natural to assume an average loss to be a measure of the /63

quality of decision rule for all information and all lecisions.
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Since averaging over decisions is equivalent to a'ere-n-

over all signals received, this average will te 1'ir e y

the formula

1 = E L [X,x()] = f'. L[x, x.(y)]dPx, .,
r - " \" X , 1"

(4.2.1)

where:

X - random variable or a stochastic process representing

informat ions;

X*(y) - decision;

Y - random variable or a stochastic process representing

signals being received;

- the averaging operation for all information and signals

XxY being received;

- measure of probability in the area XxY of informa-

tion x and received signals y.

This average will be called the risk.

As an example let us take the case where information, de-

:isions and signals received are one-dimensional and have con-

tinuous probability distributions. Then equation 4.2.1 will

have the form:

. i (4.2.2)

where p(x,y) is the overall probability density for infor-

mation x and the received signal y ([4.14]; §3.6).

It follows from eq. 4.2.1, and especially from its parti-

cular form 4.2.2, that the risk depends on:

1. loss;

2. overall probability distribution for the informations and

the signals received;
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3. Decisi,3n rule.

If the first two functions are given and defined, then

the risk depends only on decision rule and the problem of

optimization of the decision rule may be formulated as follows:

A decision rule should be found which would entail the

minimal risk. Such a rule will be called the optimal rule.

Minimal risk depends on the properties of the signals

being transmitted and thus we have to contend with the pro-

blem of selecting from a set of signal sets which fulfill

certain conditions such a signal set that the risk will be

smallest. In other words, this is a problem of optimization

of a signal set; problems of this type are the subject of i6

code theory and modulation theory.

The goal of a receiving device is the practical -ealiza-

tion of the decision rule. Thus the receiving device is a

mathematical machine (computer) carrying out, according to a

predetermined rule, decision calculations when a received

signal is given.

In many cases of realization of the optimal decision rule,

the design difficulties encountered are so serious that prac-

tical application of receiving devices making optimal deci-

sions is out cf the question. Economic factors related to

the cost of realization of the decision rule could be taken

into account assuming a linear combination of risk defined by

eq. 4.2.1 and of the function describing the cost of realiza-

tion of the decision rule as an estimate of the quality of the

decision rule. The solution to the optimization problem, based

on such a criterion is very difficult, and in general practice

decision rules are used which are selected in a more or less

heuristic manner. Often these rules are such that they allow
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one to carry out at least part of the operations related to

the calculation of decision using linear quadruples.

Optimal reception according to the method

of decision functions.

Using the equation for conditional averages ( (4.1.4)

Chapter 3.6) we will represent the risk in the form:

1= E L[X, - iY)i = E EL[X, .y)j.

.. "r ., (4.2.3)

where

E - averaging operation for set X Y of information x
x×¥ and received signals y;

E - operation of conditional averaging for set X with

a defined received signal y;

E - averaging operation for the set of received
Y

signals Y.

Let us denote

~x* y), y] = EL (X, x*(y)]
Xy, (4.2.4)

and let us call this quantity the conditional risk for a

defined received signal.

In che specific case of binary information

Cz* (y), y] L [z,, x (y)] P(x xi y) 4 L [x , x(y)] P(X = , 4.2 5)

where P(K= Xik) - conditional probability of information

x k = 1,2 for the defined signal y. /6 =
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In the case when the information is one-dimensional and

continuous (forming set XC!),

1

(*zCY), = L L(.rx) pIJG&y),Ix,

(4.2.6)

where p(xy)- - density of conditional probability at point

x, for a defined received signal.

From the particular cases (4.2.5) and (4.2. 6 )it is apparent

that when the received signal is defined, the conditional risk

depends only on decision x*(y). If we consider various deci-

sion rules, the decision is treated as the variable. Let us

denote the risk in the form l(x*, y). At a defined recelved

signal it therefore becomes the function (more generally -

functional) of the variable x*-X.

Applying the well known methods of finding function extr-

emes (extremes of functionals) we can find information x *(y)

for which the conditional risk for a high received signal is
minimal. The information xo*(y), treated as a function of the

received signal (generally - an operation acting on the rece-

ived signal) determines the decision rule which minimizes the

conditional risk given by eq. (4.2.3). Therefore it is the

optimal decision rule.

As mentioned above, decisions have a binary character in

the problems considered here. This relates both to detection

using simple Doppler systems where the object's distance is

not measured, but only its presence is determined, P d to

detection using pulse-Doppler systems with distance gating,

where decisions are made about the presence of a reflected siz-

nal within the gate. Also, in a pulse-coherent system with a
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small filling coefficient, in spite of simul*anecus imaging

of many objects, the decision about -h- existence of an cb-ect

at a given distance has a binary nature (see also [h.l5).

Thus it is only of interest to know whether an object is pre-

sent at a given distance or not. All other properties of
1

the reflected signal are treated only as passive parameters

This is the reason for considering only binary decisions in

the following discussion.

Making the natural assumption that icss caused by a false

decision is greater than losses with a correct decision, we

will obtain for the function of losses in the binary case:

L(.x . ,' k.c , : )

(4.2.7)

Taking the decision x* = xl, we will obtain, in accordance /66

with eq.(4.2.5), an average loss with a determined signal y:

I(y, e = xj) = L(z,, x,) P(X = y) + L(x 2 1) P(X = Y),

(4.2. )

and, if the decision is x* x2 , then:

(y, x* = x2) = L(xl, zj)P(X = x'y) + L(zA, x,) PX V ).
( .2.9)

Decision x* = x. will be optimal if:

I(Y' X* = X1) <hy, X* = X)

(4.2.1o

iPassive parameters are those which determine the shape of -he
signal, but are not known at the receiving side [4.1].
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arc -'-s af-e_, Substituting rel a -!-.s (4.2.3 and " .
wiiI@v

P(X =z 2 y) L(.r,. x,) - L(-,, .r)
P(y -= X,;Y) L (x,, -,) - L (x,, x2)

_n the case of fulfilment of the opposite inecu:-

optimal decision will be x* = x .

7f we introduce the notation:

P(X = X2 z y)A= "..2
P(X = X, Y)

and
L(x,, x,) - L(r, x..)
L(x., x,) -L(.,, x.)

(4~.2-13')

then the optimal decision rule will have the form

.r,, j"cii A > .1,.

The treatment above ascribes a lecision to each received

signal y, and for each y the conditional risk is minimal.

Thus, relationships (4.2.14) represent the solution to the

optimization problem.

The probabilities appearing above may be calculated cn -he

basis of the Bayes' equation:

P(X X = C P(X = ),(y X )

(14.

LM6



where

P(X=x,) - a priori probability of signal Xk;

.=x&) - conditional probability density of the rec:ved

signal y for a determined signal Xk;

C - constant which is determined from the normali-

zation condition.

Signals appearing in these applications usually denend

Dn passive parameters, such as e.g., the reflection chase

from the object. Passive parameters are treated as randcm /

quantities with a defined distribution law . Introducing the

optimal decision rule above, we did not make any assumptions

about the properties of probabilities. Therefore this rule

is optimal both for predetermined signals and for signals

Jecendent on passive parameters. The difference "etw..een. -he
o cases consists only of the method of calculation 2cndi-

nal probabilities P(.k'/.

Let us denote:

- passive parameter, multidimensional in -he

general case;

- set of passive parameters;

p(yxk) - density of conditional probability of signal y,

with the condition that information X = xk is

transmitted;

- conitional crobability distri tion of passive

parameter with the condition that informat4:n

X = xk is transmitted;

p{y.S.), - probability density of the signal received with

the double condition that information X - x. is

defined and that the passive parameter is efined;

these conditions mean that the signal sk(t,

is determined.
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It follows from the conditional distribution .nt 1[4.141

Chapter 2.7):

,"(Y , ' ' i ' .':,1'(y( 'j' 1 (4.2.16)

As ma' be seen from these considerations, it is not nec-

essary to operate with the directly received signal y(t) in

order to make optimal decisions, but it is sufficient to use

quantities j".\ :r . . This leads to imortant design

simplifications. Therefore an optimal receiver consists in

practice of . device calculating The quantities mentione:

above and a device which makes the decision on the basis of

These daze.

In the following section we will present the application

of th: principles described to the problem of signal detec-

tion in the presence of correlated interference.

Single detection in the presence of

correlated interference.

Let us assume that the received signal y(t) is a sum of

the signal s(t) and a Gaussian process Z(t), independent of
I

this signal-.

We assunme that signal sk(t) is related unambiguously to

the information xk (for the case in question - with the -re-

sence or absence of the object to be detected). The density

of conditional probability .... :., ; will be obtained immedi-

ately because the event ihereby the received signal has the

As follows from e.g. Chapter 5, the properties of signals and
of interference justify making this assumption.
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value y with the condition that information Kk had been trans-

ri ted is equivalent tc the event : .... . Thus we can

write instead of P.,j. ,=ilk; in this case p(y!,), and the

probability density P(Y!dk) is defined by a function

similar to the one for the process Z(t), but for function

y(t) - sk(t) [4.1].

it is assumed that the average value of the process equals

zero:

E{Z(I0} = . ( - - 7

The function of the correlation of the process will be

denoted by:

R,(r, t") = E z(I') Z(e")1.

We will consider the time interval Ktp,- Let us take

(i)into account the random variables z[ti , where t repres-

ents the points lying within the interval

(f > , i 1, 2. .

Making the assumption that the process is Gaussian, the

probability density of a multidimensional random variable

ZELV , z[t c'] ... at the point zl, z 2 , n

defined by the formula [4.14]:

p(z , z(...z II /'. 1 ' ) (4.2.19)

and the coefficients k are related to the values

=R=(tf,.t') by the matrix equation
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'/,,,; z',., = / .(4.2.20 )

where 1' denotes an individual matrix; matrix

is thus the inverse matrix of the matrix R' [4.16].

Writing out equation (4.2.20) we obtain:

It for j ,
" for i m. (4.2.21)

It can be proven [4.17; 4.18] that with increasing divisions

of the interval tl, t2 by points t
(i ) is:

.... (4.2.22)

and function K(t', t") fulfills the equation which corre-

sponds to (4.2.20), (4.2.21):

,r r " ( - r"), (4.2.23)

where 6(t) is the Dirac function (see [4.19]) 1.

Function Kc(rt") may be interpreted as the nucleus of

an integral operator; as follows from eq.(4.2.23), it is an /69

operator opposite to the operator with nucleus Rzr',"').

The existence of the opposite operator results from the prop-

erties of the correlation function, which is symmetrical and

positively determinate [4.20]. Let us introduce the notation:
1 Consideration of the problems discussed here using matrix

methods is presented e.g. in refs. [4.29 and 4.33].
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i, r,n [ (. )I = ' ) t,,) K W , t') t' dt'. ( 4 .2 .2 4 )

By analogy with eq.(4.2.19) , the functional

PIZ(-)i Coe ; (4.2.25)

is treated as the probability density of the process Z(t),

calculated for the realization z(t) [4.1; 4.21].

Thus we can write:

P(Y, '3k) =Co exp , 1[€,) s(.)

(4.2.26)

and

t, p,

Li.) - s, (.)] =f" [Y(t') -.k(t')] [Y(t') -. ,(t")] ,(t'. C") (4 2 2it".(4.2.27)

Function K(t, t- ) fulfills eq. (4.2.23) . Since the correla-

tion function has the property of being symmetrical,

R(t',t") pwN",e'), and also K(W,t") = K(I",I'), , therefore:

ff t') Y(t") -(t, I") d,' ,t" = jj t Y(r') K(t', C") di' ,i".

'' (4.2.28)

Denoting

en
.'tfk() = J K~t', t) s,(t') dr',

(4.2.29)

ea. (4.2.27) may be represented in the form:
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[I y(. ) - y( )] J J ,() y(t") K(t', ') 11' (i" + 2 j yt) ,sf( t ) dt -

+f *'k(t) 8fk+t) d.(
1-" (4 .2 .3 0)

After transformations we finally obtain:

In P ( + ) = I C + In P ( .) - .I j f ,k( ) s ,.(t) dt / 7 0

+ f y(t) ,f,(t) dl. (4.2.31)

The first integral in this formula is proportional to the

energy of the signal; therefore the optimal reception algo-

rithm for stationary clutter is defined only by the second

integral. Rewriting this integral one can also interpret it

as the operation of filtering the received path y(t) by a

filter with a pulse response equal to ,1&(t) in the inter-

val ,

f y(t) h, - t) 11, (4.2.32)

where

h( ) = ,fA, - r) for t, - t,
h(r)--- O for r< O or r> , - t,. (4.2.33)

On the basis of known relationships between the pulse response

of the quadruple and its transfer function [4.22] and the pro-

perties of the Fourier transform [4.23] it is evident that:

(4.2.34)

where Fk(,+) - transfer function of the optimal filter;

j- symbol for the Fourier tranform: * - coupled value.
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Let us note that s fk (t) can also be obtained directly

from the integral equation

The solution of this equation thus determines simultaneously

the algorithm of optimal reception [4.1].

The filter defined by eq. (4.2.32) or (4.2.34)is called

fitted filter [C4.1; 4.1171. It is easy to see from eqs.

(4.2.314) -and (4.2.35), in the case of interference in the form

of noncorrelated noise, the frequency characteristic or the

fitted filter is a function coupled with the signal spectrum.

If the signal is a function of passive parameters, the pro-

blem is solved similarly, by introducing appropriate averaging,

as shown above (see also [4.1]). We will return to this pro-

blem in one of the later chapters, /71

In some cases the signals have a complicated structure,

which requires the introduction of many passive parameters in

order to obtain an appropriate model representing in adequate

approximation the actual signal. However, the increased com-

plications related to the calculation of probability cause the

practical usefulness of this method to be rather limited.

It is often possible to treat the signal as a realization
2of a stochastic prccess .The receiving device is then optim-

ized assuming that the individual signals transmitted are

realizations of a stochastic process with a known correlation

1 This is easy to check by substituting the left side of eq.
(4.2.35) into (4.2.29) and using relation (4.2.23)
2 As will be shown in Ch.5, in many practical cases this approach
corresponds to the actual situation in receiving location sig-
nals.
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function.

This situation corresponds to the following mathematical

model. A decision as to the nature of the signal transmitted

has to be made on the basis of the signal received

, where sk(t) is a realization of the process

S k(t), and z(t) - a realization of the Gaussian noise Z(t).

In The bLnary case the decision depends on the ratio:

P(, ! y)

using the equation of Bayes we have

The ratio of the densities of probabilities appearing in eq.

(4.2.36) can be calculated treating (as above) the decisions

made on the basis if signal y(t), observed continuously, as

the limit case of the decision made on the basis of series of

n samples.

It should be noted that if Sk(t) is a Gaussian process,

then

'(t) - ;(4 .2. 37 )

because the sum of Gaussian processes is also a Gaussian

process.

Using the formula for a multidimensional Gaussian distri-

bution (4.2.19) it is possible to calculate the logarithm of the
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ratio of the probability densities of the samples, and then

taking the limit described earlier, it can be shown that

[4.24]:

P(Y182 ) "

In ~ 7 =(Lis,) _ I,:. : K,..(t', t") y(P'))y(t") d.' d",,,,, S (4.2.38)

where C1 2 is a constant which can be expressed by a func- ,'7

tion called the Fredholm determinant. Function K,2 (9',")

is determined unambiguously by the correlation function

R.(t',¢') with the help of an integral equation similar to

eq. (4.2.23) [4.1; 4.24; 4.25].

Only the second component of eq.(4.2.38)depends on the

signal received. Let us write it in the form:

fy(t") [f J1,,2 (', t") y(t') (ll9h ' "" (4.2.39)-

The expression in square brackets can be interpreted as

the intensity at the output of linear quadruple (usually para-

metric) with a transfer function xAi','t"), , whose input was

the signal y(t). It is possible to determine on this basis

that the analog system for calculating integral (4.2.39) con-

tains an appropriate filter, which would have the signal y(t)

as an input. The output signal of this filter is multiplied by

the path y(t), and then integrated within limits from t1 to
t 2

When S1=0, and Z(t) is white noise, it can be demonstrated

[4.24] that integral (4.2.39) can be presented in the form

f £Q1.2("t") y(W) dt'2 (t2,,, (4.2.40)
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and an analog system for calculating the logarithm of the

ratio of probability densities contains a linear filter with

constant parameters, followed by a synchronized switch, an

inertia-free nonlinear quadruple with quadratic characteris-

tic, and by an integrator [14.25].

As shown by Middleton [4.24], the transfer function of

this optimal filter is defined by the nonlinear integral

equation:

(t', U') =i f Q1('W" - ') Q1,2(t" ' ) '",
t 

(4.2.41)

and X (t; t") is determined from the relation

j[R,(t, t") + Vo(1 - 9")] X(t', ") di" = R.(t, ('),(4.2.42)

where -f 4, '<4-,
R - correlation function of the signal;

s

W - spectrum density of the white noise.
0

It is not easy to note on the basis of (..2.4l) that by /73

O(t',L") it is possible to determine directly the frequency

characteristic of the optimal filter, by applying the Fourier

transform.

A filter of the type described is a generalization of the

notion of a fitted filter for the case of stochastic signals

[4.24; 4.25].

Remarks on the optimization of

scanning signals.

iSee Appendix 7.
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As is known, in the case of ncncorrelated interference

he detectability of the signal does not depend on its form

(when reception is optimal), but only on the ratio of the

signal energy to the spectrum density of interference ([4.1]

Ch. 3). In the case of correlated interference the shape

of the signals influences significantly their detectability.

This problem has been considered e.g. by Nesteruk [4.261.

Making appropriate transformations of the first integral of

(4.2.31) and using the properties of the eigenfunctions of

integral equations ([4.27]; Appendix 2), he showed that for

a predetermined observation time Tot, , for the case of

correlated interference with autocorrelation function

the optimal signal takes the form:

(4.2.43)

and B,(t) is the eigenfunction of the integral equation

B(t) = .f R(t - t) t) ,i ;(4.2.44)

taking an appropriate value for k, it is possible to obtain

the probability of detecting the signal when its energy is

predetermined. E.g., if we assume that RV--I')=.4.xp _,-t ),
then [4.26]:

'tVW - -: -bin

C1 -(4 .2 .45)

where wk are the solutions of equation

tg -
2 (4.2.46)

The effective value of the generalized signal-to-noise ratio
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[4.29] at the output of an optimal filter is in tnis case

[4.261:

E*

2 -IV(.,) (4.2.47)

where
- energy of the signal;

W() spectral density of the power of correlated inter-

ference.

Evidently, in the example considered, the optimal signal

is a sinusoidal vibration which has an envelope in the shape

of a rectangular pulse with length 1,=e-, ; the carrier
frequency of the signal equals w '4.2. 17) indicates hat

the detectability of the signal improves with increasing

carrier frequency wk, because the spectrum of correlated inter-
1ference decreases with frequency

In the case of applications in radar, the carrier fre-

qeuncy of the signal may differ from the carrier frequency c

passive interference only when the echo of the signal is de-

rived from a moving object. Then wk corresponds to the Dopp-

ler frequency and the physical meaning of [4.2.47] is obvious:

a Doppler radar detects signals of the echo against a back-

ground of correlated interference easier when the Doppler fre-
2

quency is higher 2
. A theoretical analysis thus confirms rela-

tions known from practice.

I1n the example considered, ,=-,A 'z

2 0f course, with a determined carrier frequency of scanning sig-

nals. Increasing the carrier frequency of scanning signals a
higher Doppler frequency will be obtained for an object moving
at a defined velocity, but the spectrum of passive interference
will be also appropriately widened (see Ch. 5); therefore no
improvement of detectability will be obtained.
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The question of signal optimization taking into account

the overall conditions influencing the operation of a radoar

system in the presence of passive interference, especia1 _y

for pulse radars, is much more complicated and has no- been

completely resolved to date. Some aspects of this problem,

such as e.g., optimization of a pulse packet of predeter-

mined energy in the presence of interference of the ty e of

Markov's pro~ess have been considered in ref. -1.301; sone

other problems related to the optimization of the six !

shape in the presence of correlated interference are 0Z30

sed in ref. [4.31]. A discussion of the problem of the

choice of scanning signals from the point of view of resist-

ance to passive interference is also contained in ref. 7.32 -;

it is concluded there that an optimal signal should approach

as close as possible a path with a discrete spectrum, i.e.

periodic or almost periodic path; similar conclusions were

reached in ref. [4.34].
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5. Basic properties of signals and interference. /76

Signals and interference considered in radar technology
have specific properties connected both with scanning methods
and with the characteristics of detected objects as well as

the interfering reflections. In considering the question of

optimal reception, knowledge of these properties is indis-
pensable fci' obtaining results with practical significance.

The present chapter contains a brief discussion of phenomena
occurring in space scanning and the properties of reflections

from objects to be detected and from interfering objects. An
exhaustive discussion of this topic, which requires a separate
monograph, was not possible within the limitations of a single

chapter; we have taken into account mainly those aspects which

are necessary to discuss the optimal algorithm for signal

detection in the presence of interference.

5.1 Phenomena occuring in space scanning.

The course of events taking place during space scanning

by radar or in sonar ranging may be generally presented as

follows (Fig. 5.1.1.).

The scanning signals travel in space and are reflected

both from objects which are to be detected by the station,

and from bodies (stationary or moving) about which information
is not required; echoes derived from the latter are the source

of interference, making the detection of desired signals more
difficult. Because this interference is not actively gener-

ated and arises only as a result of reflections of the scan-
ning signals, it is called passive interference to distinguish

it from active interference.

The properties of the space being scanned may be gener-

ally described by introducing operator V, which transforms
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scanning signals w(t) into reflected signals u(t):

V - ().(5.1.1)

Assuming linearity of the effect of electromagnetic wave pro-

pagation and reflection in space, operator V will be a linear

operator. Therefore it is possible, based oA-tlhe principle

of superposition, to write the relation 5.1.1 in a form which

shows a separate transformation of the scanning signal, caused

by reflection from the object being detected - let us denote

the appropriate operator by V - and the transformation caused

by reflection from objects which are the source of passive

interference. The operator of the latter transformation will

be denoted V
p

1, 4{ ?(t) l e V )l + r,,'P 'l
(5.1.2)

The reflected signals u(t) may then be written in the form:

u(I) = 4,) -; 1,Y), (5.13 )

i.e. as the sum of signals derived from objects being detected

9(t) = V',r(,t)1 - and passive interference - _ ,) = ,*p',r(t). . This

form will be useful in later discussion of the properties of

signals.

At the input of the receiver, heat noise is added to the

reflected signal u(t); their source is both the surrounding

space and the receiver itself. As a result we obtain the path

y(t), composed of the desired signal, passive interference and

heat noise
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= ()+ I,)+ ~aI(5 .14 )

where n(t) -heat noise.

I-. P3nre

Fig. 5.1.1. Generation and reception of radar signals.
1. set of scanning signals, 2. space being scanned, 3.
ideal receiver, 4. decision about the object's existence,
5. heat noise.

An ideal reception algorithm should assure an optimal

detection (in the sense of considerations contained in Oh.

1.3 of the object on the basis of knowledge of path y(t).
In order to define the optimal way to receive the signals

it is necessary to know the appropriate characteristics of

signals and of the interference.

As mentioned above, these characteristics are related

to the methods of space scanning by directional antennas,

characteristic for a location. In systems problems in loca-

tion it is assumed as a rule that the system "transmitting

antenna - space being scanned - receiving antenna"~ can be re-

placed by an equivalent separable quadruple with variable

parameters [Fig. 5.1.21, thanks to which a signal reflected

from a stationary, nonfluctuating point object may be pre-

sented in the form:

94



where

k(t) - attenuation of signal along the path: trans-

mitting antenna-object-receiving antenna, deter-

mined by the radar range; equation (5.1).

gn and g0  - functions related to the directional character-

istics of the transmitting and receiving antennas,

respectively;

r - distance of the object;

c - velocity of signal propagation in the environ-

ment being scanned

In pulse radar devices the same antenna is most often used

to transmit and receive the signals. In addition, the para-

meters of the device are chosen such that an individual object

will give rise to a signal composed of several to several tens

of pulses (see Ch. 2). Thus we will have in this case

a()g,(t)=g(O), , and in addition we can assume approximately that

g() g ( L 2 , because the antenna revolves during a time

equal to -- by an angle which is small compared to the width

of the antenna beam. We can then write:

u,() , , - ,(5.1.6)

where G(O)=-(l).

It is easy to note that G(t) is related to the direction-

al power gain characteristics of the antenna G(p) in a manner

similar to the relationship between g(t) and the directional

amplitude characteristic.

As could be expected, it follows from (5.1.6) that the

echo signal received from a point target is reduced and delayed

iDerivation of (5.1.4) is discussed in Appendix 1.
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Fig. 5.----------------------

Fig 5..2.Equivalent system of transmitting antenna, space
being scanned and receiving antenna. 1. delay line, with a
delay of 2r.

by the echo return time of the scanning signal, which is mod-

ulated in the scanning process by the path corresponding to

the directional antenna characteristic.

This relation is easily illustrated for the case when

space scanning takes place with a constant velocity in one

plane; this is a situation often encountered in radar - e.g.,
antennas of warning stations, area control stations, airspace

control stations, etc. revolve with a constant azimuth velo-

city. Then o(;()]=G($), , where y - angular velocity of antenna
revolutions. Fig. 5.1.3 the signals reflected from a point

object when the scanning signal is a series of pulses with

repetition frequency fp = l/T P, This kind of signal is often

called a "pulse packet" in radar.

I-I -

Fig. 5.1.3. Generation of pulses in the form of pulse "packet"
during reflection from a point object. 1. transmitting sig-
nal, 2. echo signal

5.2 Reflection properties of detected objects.
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The objects detected may be usually considered to be

points, since their dimensions are small compared to the
1effective range of the scanning signals 1

. The characteristic

attributes of reflections generated by actual objects detec-

ted are the following: Doppler frequency, caused by the

object's motion, and the fluctuation in amplitude. The pro-

blem of electromagnetic wave reflection from moving objects

has been discussed e.g., by Cole [5.2]; see also [5.3]. For

the purposes of this work it is sufficient to use (5.1.5), /80

taking into account r=t)=ro+v, , where v - radial compon-

ent of the object's velocity. In this case

S2 )(5.2.1)

Comparing (5.16) and (5.2.1) we obtain:

8, [t ( -- 2v) 8(t),
#* (5.2.2)

or

+ 2v1 3)].

(5.2.3)

During reflection from a moving ojbect the reflected signal

is, so to speak, "stretched" or "compressed" in time (depend-

ing on the magnitude and sign of radial velocity, i.e. depend-

ing on whether the object is moving closer or away). This can

be interpreted to mean that the path s(T) is transformed into

1
e.g. at typical scanning pulse lengths between 1-5 p £ the

effective range will be 150-750m, much greater than dimensions
of an airplane. This is even more evident in terms of angular
coordinates; e.g. at a distance of 100km the beam width of 10
corresponds to the effective width of about 2000m.
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path s v(t) by the following operation:

(5.2.4)

This kind of operation has a simple geometrical interpreta-

tion (Fig. 5.2.1) [2.4).

In agreement with relations (5.2.2) and (5.2.3) we have

( ) (5.2.5)

As known, a harmonic vibration modulated in frequency can

be written in the form:

Y(S) - A sin J ) dr.

I(5.2.6)

where w - instantaneous pulsation (5.5).

In this particular case we thus have:

P(9) = f, | 0,(,) ,
(5.2.7)

If, according to (5.2.7)we transform the complex vibration

represented by the Fourier series

(5.2.8)

then the transformed path can be presented in the following /81

form, which demonstrates the modulation of frequency of the

individual components of the echo signal, caused by the
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object's motion:

Sw) k OXYP I~ + v"]d
0- • (5.2.9)

In the general case the components of the scanning sig-

nal are thus modulated with unequal deviations during reflec-

tion from a moving object. This effect is sometimes called

"Doppler dispersion" [5.6].

However, since signals used in detection have as a rule

a small bandwidth relative to the carrier frequency (e.g.,

the bandwidth of such signals is of the order of a megaherz,

and carrier frequencies - of the order of 103 Mlz [5.1],) we

can usually assumr- that" -o.

V V .

Fig. 5.2.1 Geometric interpretation of relation 5.2.4

As follows from (5.2.9), all components of the spectrum

will then be subject to the same transformation. The physical

interpretation of this relationship is particularly clear for

the case of constant radial velocity v; with the assumption,

justified above, that ,wo . We can then say that the

spectrum of the echo signal is displaced along the frequency

axis by

2,
IA - A, - 2.

C (5.2.10)
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Frequency fD is the known Doppler frequency for the case of

reflected signals [5.1]. This frequency is one of important

properties which distinguishes echoes derived from objects to

be detected from amongst interfering reflections.

As an example, for an object moving with velocity

v = 1000km/hr and a scanning signal having a carrier frequency

of 1000MHz, fD is approximately 1850Hz (cf. Fig. 2.12). /82

In some very special cases the Doppler frequency for a

given object may be known, but in general it is a passive

parameter of the signal. Making certain assumptions as to the

probable velocities and directions of the objects' motions

within the space being scanned, it is possible to determine

the probability density function p(fD ) ([5.1], p. 127-128).

However, the correctness of such assumptions depends on spe-

cific conditions; for air communications using defined air

corridors and utilizing airplanes with known velocities such

a method would be justified. For the detection of airplanes

of unknown type which could arrive from any direction, obvious-

ly the usefulness of determining p(fD ) could be questioned.

The problem is somewhat simplified when considering typical

signals in radar stations serving for target detection, i.e.,

series of short pulses with relatively small repetition fre-

quency. The bandwidth of the possible Doppler frequencies is

then usually much larger than the pulse repetition frequency

fp, but considerably smaller than the width of the spectrum

of an individual pulse. Since for the type of signal mentioned

above it is practically impossible to distinguish (see Ch.

4.1) an echo signal with a Doppler frequency fD from a signal

1 Taking into account conclusions of relativity theory, we obtain
a more accurate formula for Doppler frequency. But the rela-
tivistic aspect of the effect may be omitted here even for sat-
ellite velocities (of the order od 2.10-5 .c), e.g. for fw=1 000

MHz the difference in fD values obtained using relativistic for-
mula and (5.2.10) is only appr. 0.5Hz [5.7; 5.8; 5.9].
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with a Doppler frequency equal to f D + kf p(where k =1,2,

3 ... ), a certain "averaging" of the effective probability
density of this passive parameter takes place. Therefore,

it is often possible to assume a uniform distribution of the

probability density p ~ in appropriate interval.

We will now discuss a typical property of reflections

from real objects, such as airplanes, namely strong random

fluctuations.

Because an airplane is usually an object with dimen-

sions much greater than the wavelength of scanning signal,

it is usually assumed that reflections occur independently

at many points on its surface. Because of the constant change

in the airplane's position in space, its vibration, etc.,
there are constant fluctuations of phase and amplitude of

these primary reflections. It is most often assumed that

following reflection the sine and cosine components of narrow-

band signal become independent and approach stochastic pro-

cess (which may be considered stationary within the time

interval considered in detection problems), which are Gaus- /83

sian according to the central limit theorem. This indicates

that the instantaneous amplitude distribution of such a sig-

nal is determined by Rayleigh's law, and the phase distribu-

tion is uniform (cf. Appendix 2) [5.3; 5.10-5.12].

For instance, Fig. 5.2.2 shows the results of experi-

mental studies of the probability distribution of the echo

signals amplitudes, derived from a two-engine jet plane of the
type B-145. The measurements were taken simultaneously at

wavelengths of appr. 3, 10 and 25 cm E5-112J.

Concerning data about the variability of aircraft ref-

lections in time, it can be generally said that for propeller

planes fluctuations between pulses can be expected, while for
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jet planes there exist strong fluctuations between pulse
"packets", but within such a "packet" the reflected signals

are strongly correlated [5.18]1 .

, [ ,l ! !'1 I ! !l i ii',' ! r ! '' ti !! ! ! !

-5,..-.-.- -------.... . ---. ,4 ------.--- '

.... . . ,

.Zoi., o ?0 30 40iO /0 85 ;0 , 8 13 g.5 -3&

Fig. 5.2.2. Graph of the probable reflection area of a jet
plane of type B-45. Points x - experimental data; solid linedenotes the theoretical relationship for Rayleigh's distribu-
tion (5.11).

On the basis of these considerations it is possible to
represent the received echo signal, originating from space /84
scanning by a narrow-band coherent signal, in the following way:

a ,(; 3; 0,;ID) = 3,(t) A(t) sin (2njdt) + 3,(t) A(t) cos (2xf*). (5 . 2. 11)

1Extensive literature on the problem of the properties of echofluctuation is cited in one of the previous works by the aut-hor [5.13]. Specific theoretical considerations of the form
of reflected signals in more general cases can be found in
ref. [5.14].
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-Gaussian stochastic processes, which determine

signal fluctuation; for fluctuation "between

packets" we can simple write 3, .7. - random

variables with normal distribution, which deter-

mine the influence of signal fluctuation;

A(t) - envelope of the echo signal in the case of non-

fluctuating reflection from an object with an

equivalent effective reflecting surface;

f - carrier frequency of the echo signal, and
5

f = f w+ f D$where f w- carrier frequency of

the transmitted (scanning) signal;

f D- unknown Doppler frequency.

For instance, if we consider a panoramic station scan-

ning the azimuth with a uniform angular velocity, and the

scanning signal is a series of periodically repeating pulses

with period T Pand the envelope of individual pulse A s(t),

then

n= -=(' ) (5 .2 .1 2 )

(cf. Fig. 5.1.3).

(5.2.11) may be writteni in the equivalent form (see

Appendix 3):

-90; Os; 34fn) = 3,Ul A4(I) cos [21rf. + 0,~j (5 .2-.13)

where

.980- a process with Rayleigh distribution, deter-

mining the amplitude fluctuation of the signal;

for fluctuation "between packets" we can take

simply $6 - random variable with Rayleigh

distribution;
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-a process which determines the phase function of

the signal, with a uniform distribution within

the interval <02I ;for fluctuation "between

packets" we can write .9. - random variable

with an analogous distribution.

In the case when the scanning signal is noncoherent or

when the reflection shows fluctuations "between packets",

the signal can be represented in the form:

S(O; 91; .9.J = 010t) A .(1) si n (2xfl1) + 32(t) A (t) cos (2711.2), ( 5 .2 .14 )

where -Gaussian stochastic processes whose corre-

lation time is much smaller than the pulse repetition period

(but longer than their duration).

When the signal shows this type of phase fluctuation, /85
and it is practically impossible to select the regular com-

ponent due to the Doppler effect, it can be generally assumed

that !, fc.

Depending on the particular case it may be more useful

to assume a model of the echo signal. There may also be some

intermediate situations. In Ch. 6 it will be shown what form

is assumed by the optimal receiving system depending on the

signal model accepted.

5.3 Properties of passive interference.

It is known that passive interference is the result of

reflection of the scanning signal from many objects, whcse

detection is not required in a given radar application. Thus

for a radar device tr detect airplanes, passive interference

will include reflections from surface objects, clouds, rain

or artificial obstacles in the form of a cloud of dipoles tuned
104



to the radar wavelength.

As in the previous paragraph we will limit ourselves to

a brief description of the basic properties of passive inter-

ference based on published literature. An extensive biblio-

graphy on this subject is contained in one of the earlier works

by the author [5.131.

Fluctuations of passive interference.

A basic property of passive interference is the fact

that usually the effective volume of the scanning pulse (see

note in the previous chapter) contains an enormous quantity

of elementary reflecting objects. Therefore the applications

of the central limit theorem to the resultant reflected sig-

nal leads to the conclusion that the signal fluctuations must

have the characteristics of a Gaussian process. This conclu-

sion is confirmed experimentally with a relatively high

accuracy [5.15-5.17].

Aside from individual motions of individual reflecting

particles giving rise to fluctuations of passive interference,

all particles may also have a common motion component. This

occurs e.g. in clouds, moving as an entity due to winds. The

reflected signal then undergoes Doppler displacement, simi-

lar to the events described in the previous chapter.

The influence of the movement of the cloud as an entity

(or, equivalently, the possible movement of the radar device

with respect to interfering objects) can be compensated for

by using approrpiate systems in the location device (see Ch.

2). Therefore it will be often assumed below that Doppler

displacement does not occur for passive interference.
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Reflections from objects such as clouds or artificial /86

obstacles do not have a constant component (nonfluctuating

component). In contrast, reflections from ground objects may

have such a component due to reflection from a large smooth

object (rock, large building) or from a group of such objects.

In this case the amplitude probability distribution of the

reflected signal takes on the form of a generalized Rayleigh

distribution [5.15, 5.16].

As shown by Veinshtein and Zubakon [5.3], passive inter-

ference can be treated as a narrow-band stationary process

for problems considered here. Therefore they can be repre-

sented in the form (cf. Appendix 2):

B() = P(t)Cos cust + '(t)sinj. (5.3.1)

As suggested in Ch. 4.2 in considering signal detection

problems against a background of interference it is necessary

to know, among other things, the appropriate correlation func-

tions.

The spectrum of passive interference is usually symmet-

rical with respect to the carrier frequency of the reflected

signal. Thus if we take f. = fw + fD' then the mutual
correlation function of processes P and Q, RpQ(T) - 0. If

the frequency fw of the scanning signal is taken as the

refererce frequency, then the mutual correlation function
SpQ for passive interference is not zero (see Appendix 2).

As mentioned above, the displacement of the central frequency

of the interfering echo, due to the Doppler effect, can be

compensated for by appropriate systems.

The correlation properties of passive interference are
conveniently represented by dividing the autocorrelation
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function into two parts, namely, the autocorrelation function

R(T) depending on the scanning signal and n the properties

of the reflecting objects. In order to stress the latter we

can interpret the effect in such a way that first, an auto-

correlation function will be found for the case when the scan-

ning signal is a continuous wave. Such a function distin-

guishes only the correlation properties of the reflections

from interfering objects. It will be denoted R (T). It isP
easy to note that, given R (T), it is easy to find the com-

plete autocorrelation function R(T) for each 3canning signal

with constant carrier frequency. This is because the scanning

signal is treated as a continuous wave signal modulated by the

envelope of the scanning signal. Then, in agreement with the

relationship defining the autocorrelation function of a pro-

cess modulated in amplitude [5.18]:

B1, = = 1RW,

(5.3.2)

which gives

R()= R(t)R,( )OR s(2xffe), (5.3.3)

where Rw (T) - autocorrelation function of the envelope of /87

transmitted (scanning) signal; see also Appendix 5.

Considering the general problem of electromagnetic wave

dissipation in a non-uniform fluctuating environment, Gorelik

[5.10] has demonstrated that autocorrelation functions Rp have
in this case the characteristics similar to function e-f

or ,-' In radar applications a Gaussian shape is most

often assumed for the autocorrelation function Rp, and there-

fore a Gaussian shape is assumed for the spectrum of fluctua-

tion power [5.15, 5.16, 5.20, 5.21]1
1In some problems of circuit synthesis it is more useful to use
the trigonometrical-exponential approximation (5.14).
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In refs. [2.18, 2.19[ the spectrum approximation

W (f) = J1(Rcosr.fr), is substituted by a Gauss function:
p

k (,Li' (5.3.4)

where fs - carrier frequency, a - coefficient dependent on

the object. Here are several typical values of this coeffic-

ient:

1. Reflections from ground objects (little 1019

vegetation, no wind) a=(3 - 5)"

2. Reflections from ground objects 17

(dense trees, windy) 
a=(2 - 3)"

3. Artificial obstacles a= appr. 10016

115
4. Rain clouds a=(2 - 3)'

Fig. 5.3.1 gives typical examples of the approximation

of spectra of passive interference by formula (5.3.4).

I ' i .
0.2

Fig. 5.3.1. Spectra of correlated interference for various
objects, calculated according to formula 5.3.4.

In practice, especially when air whirlpools are possible

etc., the spectra of passive interference may differ from the

shape defined by formula (5.3.4). Fig. 5.3.2 shows the spectra

of passive interference measured experimentally (on the basis

of ref. [5,17].
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Concerning the spatial properties of passive inter-

ference, there is a lack of specific experimental data in

the published literature. Assuming, as Emslie and McConnell

had done ([5.23], Ch. 16), the most unfavorable case of

passive interference from point objects distributed in space

randomly, it is possible by analogy with formula (5.1.6)to

represent the effect in the following way. At a constant

dis,.ince r and antenna revolution speed y, the envelope of

the ouptut signal will be obtained by putting a signal with

the characteristics of white noise through a hypothetical

quadrupole with a pulse response in the form of the direct-

ional antenna characteristic G(0) (cf. Ch. 5.1 and Appendix

1). This signal will have the power spectrum

wV1(w) = kj slI'. (5.3.5)

On the basis of the Wiener-Chinchin theorem and because of the

properties of the Fourier transform [5.24, 5.25] we obtain,

after appropriate transformations, an autocorrelation function

RA(T) in the form:

- 'VA(oi)I G(14) * Gy)
(5.3.6)

where * represents the operation of convolution

Finally, treating the influence of space scanning as a modu-

lation of reflected signals by a process with the correlation

function RA(T) (cf. Ch. 5.1 and Appendix 1 and 5), we can write

As known, convolution of functions f1 (t) and f2 (t) is defined

as: -
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the autocorrelation function of the signal derived from pass- /89

ive interference in the form:

Mr ) BR(r) rP,(r) J.4r) s °r.(5. . )

From (5.3.7) (on the basis of the Wiener-Chinchin theorem

[5.24])we find an equivalent relationship for the passive

interference power spectrum:

I|(c -- 'I) = JV',(u) *< lI,(w ) "* II' 1(w) •  5 3 8
(5.3.8)

. . . . . .

se a 2 1 '

Fig. 5.3.2. Results of measurements of the spectrum of

passive interference in the form of a dipole cloud [5.17].

Intensity of passive interference.

Considering the problems related to the detection of

objects in the presence of passive interference we should

realize the possible range of values for the interfering

signals.
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7'or dipole interference, we can cite a an examole the

;ata 2ontained in ref. [5.17]. It describes the properties

of interfering dipoles tuned to a wavelength of appro. 20cm.

A packet of such dipoles weighed 4.5kg and contained 3,75.

106 dipoles. Fig. 5.3.3 represents the effective area of the

packet as a function of time; it indicates that the orienta-

tion of dipoles in space is not completely random - the

effective area depends on signal polarization. However, the

difference is not too great and amounts to about 2.5 dB.

Evidently, immediately after dropping, the effective area of

the packet is smaller, which is understandable because the

dipoles have not moved away from each other yet. After sev-

eral minutes, when the dipoles are sufficiently dispersed,

the effective area stabiliZes. The diameter of a dipole cloud

derived from a 4.5kg packet was 18 00-2700.m2 (in the horizontal

projection) in the studies described 1 . The falling velocity

was 30 to 60m/min. The width of the fluctuation spectrum
2

was (depending on wind velocity, 6 to 32km/br)between 6 and

15Hz [5.173.

Special attention should be given to a 7arge effec;ive

surface of Interference, which totals 500-100 m2 /kg in the case

described. Present-day jet fighters, for example, are known to

have an effective surface on the order of i m-V.

Modern means thus allow to create very strong passive

interference and aircraft detection in its presence may be a

difficult task.

We should mention briefly the relationship between the

detected signal - passive interference ratio and the pulse

length and the width of the beam of antenna characteristic.

The effective range in space of the radar pulse of duration /90
c Ttime T is, r (where c - velocity of light) and for detection

devices is greater than the dimensions of an airplane. Thus

the effective area of an airplane may be assumed to be indep-

endent of pulse length. In contrast, the interfering dipoles
1 In the work discussod [5.17] the typical shapes of dipole
clouds were also given.

2At the level of 0.05 power.
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may be, as suggested by the results of experiments described

above [5.17] dispersed over a large area. The combined power

of passive interference is directly proportional to the

quantity of dipoles [5.17], and therefore - because of their

uniform distribution in space it is proportional to the

effective pulse length. This indicates that the signal-to-

noise ratio in this case is inversely proportional to pulse

length. This is reflected in the manner of defining the

quantity of dipoles necessary to achieve a predetermined

noise-to-signal ratio with a known effective area of the air-

craft and radar nu'ie length. The dipoles weight corres-

ponding to an Jlement of distance resolution of the radar is

determined.

::
Fig. 5.3.3. Intensity of passive interference in the form of
dipole cloud depending on wave polarization [5.173.

The dependence on antenna characteristics can be presented
1approximately as follows I

. If the interference occupies a small

part of the bundle cross-section 2 , then the signal-to-noise

1A more detailed analysis of this problem is found in refs.

[5.15] and [5.26].

2) To fill bundles with a width of 10 at a distance of 100 km,
for example, dipoles must have a diameter of approx. 2 km.
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ratio is independent of bundle width. However, if inter-

ference is present over large areas, completely filling the

bundle, then there is a dependence on bundle width.

As follows from the radar range formula [5.1], the /91

echo signal is:

P, A

where

Ps - power of scanning signal;

r - distance of reflecting object;

c - wavelength;

G - antenna gain;

X - effective area of reflecting object.

It can be assumed that ajee, where &4;e - widths of the

antenna characteristic (at the half-power level) in azimuth

and elevation [5.27). If it is assumed that for a unit volume

of a cloud there are n objects with an average effective area
1 then the interference power received will be:

P, . A~~cT

ra (4,rp .e 2' (5.3.10)

and therefore the signal-to-noise ratio will be:

P, 1 2 1

Pa r C2, 9a(*o ,

(5.3.11)
1for a half-wave dipole, the effective surface depends on its
orientation in space relative to radar station. The maximum
value of this surface is 0.86X2 assuming that all dipole positi-
ons in space are equally probable, the averaged value ao is
appr. 0.11X 2 (5.28, p. 36-38).
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As evident from (5.3.ll)(in the case where interference

fills the beam) the signal-to-noise ratio is inversely pro-

portional to the solid angle of the beam. If, for instance

two stations have identical antenna characteristics in the
vertical plane, then the greater the beam width in azimuth,

the smaller will be the resistance to passive interference

ranging over large areas.

Similar relationships also hold for interference caused

by rain, snow, etc. As we know, the effective area of a rain-

drop depends on the drop diameter D [5.15].

aL -DO(5.3.12)

where k. ,,and E - coupled dielectric constant; in

Fpractice, for wavelength range of 3 - 23 cm it may be assumed 192

that ;k.!'o [5.29]. It is assumed that D 7 :kA.

Because of the strong dependence of D an exact determi-

nation of the power of interference is not possible, because
of the possibility of varying size distribution of the drops.
An estimate of the effective surface is possible because of

some empirically observed relationships between the average

drop size and the intensity of' rainfall, expressed in mm/hr

[5.1, p. 538-543; 5.30; 5.31]. Fig. 5.3.4 represents the
graphs taken from ref. [5.31] of the average effective area
(related to unit volume) of rain, snow and clouds, for several

typical wavelengths used in radar.

This graph gives an idea of the order of magnitude of

passive interference caused by the aforementioned meteoro-

logical factors; a more detailed discussion of this problem

may be found in literature cited.
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object may be within an entire lobe or even several lobes;

then p-, , as in free space [5.11, p. 212]. In pulse
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radar devices the effective reflection area from the ground

is approximately proportional to the distance because of the

increase of the geometrical field area which gives rise to

the reflections. Therefore at nearer distances the power of

the echo signal generated by a given object located on the

3earth's surface shoudl decrease inversely to r , whereas at

larger distances - inversely to r7.

Fig. 5.3.5 shows the results of measurements where echoes

were caused by reflections from sea waves ([5.11], p. 212).

The results indicate the agreement of the character of the

phenomenon with the simipified theoretical model presented

above.

To evaluate approximately the intensity of stationary

clutter, caused by reflections from ground objects, Shrader

[5.37] used the following simplified model (which takes into

account the curvature of the earth's surface). Let us assume

that the average height of reflecting objects is hz . The

height of that part of the reflecting object which is visible

above radar horizon depends on the effective height of the

radar antenna ha* As an approximation, the geometric area of

reflecting objects A may be taken A(r r oh. up to the limit of

the radar horizon (i.e. for , "jihiF. , where R=2/3 of the

earth's radius. At larger distances we will have
AIr) = ro. , ' I ,

2II

Assuming that the minimum signal power detected by a given

device is P we will thus obtain;

__ _ -. ' k ,.A ,r .I ,. gdy r < P.~

(5.3.13)
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where

G m antenna gain in the direction of maximum radiation,max C

rmax  - maximum range of a device for a detected object

with effective area a,

Go  - antenna gain in horizontal direction (i.e. for an

elevation angle equal zero),

r - distance of the reflecting area,

k, - coefficient of reflection, which is the ratio of

effective and geometrical areas of the interfering

object [5.37].
/94

r-7

Fig. 5.3.5. Results of intensity measurements for reflections
from sea waves [5.11].

Fig. 5.3.6 gives the results of calculations (curve A), /95

carried out with the following parameters:

Gmax=34dB; GO=31dB; e. =1,2; rma 315 ki

= 2,25 m2; he = 23 n; , = 1"2.2 m; k, = 0,05.

These parameters correspond to a radar station of ARSR-2

type, used in the U.S. to direct and control air traffic, des-

cribed in Ch. 3. The actual intensities of stationary clutter,

measured at two stations, are given by curves S and 0 in Fig.
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Fig. 5.3.6. Intensity of passive interference caused by

reflections from field objects, as a function of distance

from the radar station. A - theoretical curve, S and 0 -

results of measurements at two different locations [5.371.

1 - relative intensity of stationary clutter, 2 - distance

from station, km.

5.3.6. In Seattle the terrain was hilly; whereas in Oklahoma

City (curve 0) it was relatively flat [5.37]. It is se.f-

evident that in mountainous regions there ma,- very sYong

stationary clutter even at large distances; ref. [5.321 gives

the appropriate data for a radar installed in the Alps.

Passive interference in moving radar devices.

In the case when the radar station is in motion (i.e.

when it is located aboard a ship or a plane) the reflections

from stationary objects have a radial velocity component

with respect to the station. Aside from the aforementioned

factors - i.e. internal fluctuations of interference and the

modulation caused by space scanning - which influence the

structure of passive interference, the effect of the movement

of the device with respect to reflecting objeits must also be

taken into account. 118
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When objects causing passive interference are in the same

plane as the radar station (which is approximately correct,

e.g. in the case of devices located aboard ships), the radial

velocity component of the object vr is related to the station

velocity vst by a simple formula:

v, - v co a ( 5 . 3 .1 4 )

(see Fig. 5.3.7).

in the case when the station is located aboard a plane,

and stationary clutter from field objects is considered, the

relative radial velocity of objects is defined (fig. 5.3.8)

by the relation:
v, - o ct os a cos # V't Cos (0.

(5.3.15)

/96

Vtt

NN.

Fig. 5.3.7. Determination of Fig. 5.3.8. Determination of
radial velocity component of the radial velocity component
the object with respect to a of the object with respect to
moving radar station. a radar station moving in a

different plane.

The radial velocity component of interfering cbjects can

be compensated for by introducing an appropriate signal of
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Doppler correction, or by using an autoccherent system (see

Ch. 2.5 and [5.1, 5.23, 5.38].

The effect of the movement of the station itself is also

evident in the form of a modification of the interference

spectrum. We will explain this using the example of an air

station. Because of the finite width of the beam of direct-

ional antenna characteristic and because of the finite pulse

length, the surface area illuminated by the scanning signal

where reflected interference originates, also has finite

dimensions. Therefore individual points on this surface will

have slightly different radial velocities with respect to the

radar station, and this different Doppler frequencies. As an

example let us consider the influence of beam width. If the

beam axis is directed at the angle e, then the radial velocity

component is defined by formula 5.3.15, and the Doppler fre-

quency at the beam axis is

2v,t
A (5.3.16)

where X - wavelength of the radar station.

For narrow beams we can write an approximate formule for the /97

width of beam "scatter" of Doppler frequencies in the form:

( 2Vsg
-d cs 05 iOA (5.3.17)

AlA

where e - beam width.o

The spectrum of interference is widest when the antenna

is directed at a 900 angle with respect to airplace path

[5.1, 5.39].

However, passive interference also enters the receiver

through the side lobes of the antenna. Moreover, the spectrum

of passive interference in the beam takes on a characteristic

form. It can be determined by the method given in reference [5.40].

Let us note, on the basis of (5.3.15), that the geo-

metric location of points with the same relative radial velo-
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city with respect to the moving radar station is the surface

of a cone with angle 9. Therefore the surface of the terrain

which reflects signals with Doppler frequencies betweenfD
and fD -- iJft' is limited by two parabolas; the participation
of reflections from this surface in the spectrum of passive

interference is represented by the shaded area in Fig. 5.3.9.

Fig 5.-9 Gemericloctin o rfletin pint, ivig/

spetru cmpoentwih feqences eteenf Dan Ia-1

Fih. rel3.9. Gew eometrica octio ofa reflecting onsuivngac

sctrum comepnent wi the freeadavncin Dadene becus

Satinhefrom simplce gesoericireltionspnd sirngl the rada

angle oformulancit is possile tsonclut the sape of th urae.

the. relatio bewee geotical ad gradaroft reflecti sufc-

athsesuacthscefficient depe eaiedsusind hs stroglym ony the

found in refs [5.1, 5.11, 5.15, 5.'40-5.461.
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A typical shape of the spectrum of passive interference

resulting from the motion of radar station with respect to

interfering objects is shown in Fig. 5.3.11. As can be seen,

the total spectrum width is '"'; ; the maximum spectrum den-

corresponds to the interference originating from the main

leaflet of antenna characteristic [5.39].

I r~ermi~wv 0j___W

10 2P N. IV'U . Sr ' . W. t'

G 0" - ° -

Fig. 5.3.10. Averaged graphs of the coefficient of reflection
from terrain (state of the sea according to the scale of
Douglas.[5.11]. 1 - coefficient of reflection (dB), 2 - angle
of incidence, 3 - forest area, 4 - cultivated area, 5 - sea (4),
6 - sea (3), 7 - sea (2), 8 - sea (1).

These remarks indicate the difficulties in obtaining

effective reduction of stationary clutter in radar devices

which are in motion. A more detailed analysis of the problem,

contained in the works of George, Dickey and Urkowitz [5.47-

5.49], allows to determine the theoretical effectiveness of

MTI systems under these conditions. Fig. 5.3.12 represents a

graph of theoretical stationary clutter reduction by an on-

board aircraft radar station with the following parameters:

width of antenna beam - 30; antenna revolution rate - 12/min; /99

pulse length - 0.75ps; repetition frequency - 2kHz; flight

altitude - appr. 6100m; velocity - appr. 460km/hr; MTI system

with a single subtracting system. As seen from the figure,
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the effectiveness of reduction depends largely on the direc-

tion, and varies by appr. 24dB (from 12dB to 36dB) [5.483.

-7. .... 

Fig. 5.3.11 Typical shape of Fig. 5.3.12. Graph of sta-
the spectrum of passive inter- tionary clutter reduction
ference caused by the movement for an on-board radar sta-
of radar station with respect tion [5.48]. 1-direction of
to the reflecting objects motion.
[5.39]. 1-spectrum of reflec-
tions from lateral lobes, 2-
spectrum of reflections from
the main lobe.
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6. The optimal reception algorithm. /102

On the basis of previous chapters we can begin to define
the optimal signal location algorithm in the presence of pas-

sive interference. The optimization of reception is considered
here in terms of making binary decisions, in accordance with
the mathematical model discussed in Ch. 4.2.

One of the most important problems in this case in the
determination of the structure of the optimal filter, defined
by the integral equation (4.2.35) or (4.2.141) and (4.2.142).

Thus we will begin the consideration of the problem of
the optimal reception algorithm by discussing methods, which
may lead to an effective solution of the appropriate integral

equations.

6.1 Solution of the basic integral equation.

As follows from considerations in Ch. 4., in considering
the optimal reception algorithm it is important to obtain
effective solutions of integral equations of the kind:

This is the so-called Fredholm equation of the first
kind [6.1]. Before considering in more detail the optimal

reception algorithm, we should spend some time on the outline

of the methods for solving such equations.

An integral equation of this type may be solved by the
general expansion method, using orthogonal function systems

or orthogonalized function systems [6.1], or by other methods.
E.G., for kernals r(t,,t') belonging to a certain higher class
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of functions. A method is used which consists simply of

solving some differential equation related to the initial

equation [6.2, 6.3]1 . We will use here the method of ortho-

gonal expansions, which simplifies the proof of the theorem

of displacement for integral equations, and makes it possi- /103

ble to obtain simplified solutions. An outline of the method

of solving integral Fredholm equations of the first kind with

the help of orthogonal expansions is given in Appendix 3. In

the applications described here, the kernals F(t,t') are the

autocorrelation functions of stationary stochastic processes.

Taking advantage of the properties of the autocorrelation

functions it is possible, as indicated in Appendix 3, to solve

the basic integral equation using one of the best known ortho-

gonal expansions, namely the Fourier expansion.

Equation (4.2.35) may also be rewritten in the equivalent

form (cf. D.3.15):

R(t -t') (t','*,jtd-

(6,1.2)

where
0<9<T, T - i ,

I') dla 0<9'< T
i(w) 0 for other values of t.

Using Fourier transformation, we obtain the solution

(see D.3.16-D.3.22):

¢(t) - jS(P) ,p

~(6.1.3)

where

1 It should be mentioned that special computers have been con-

structed which allow the analog solution of similar equations
[6.4], Ch. VII, §18). 128



(p2rj) (6.1.4)

an'd S w () 6..4

and S(p) = ljr; ; Sr is the so-called expanded function

s(t-t0 ) - see D.3.16; W(p) is the spectral power density,

corresponding to the autocorrelation function (R(t-t'), and

fu-nctions X and X are defined by eqs. D.3.19, D.3.23

and D.3.24.

An effective solution of (6.1.2) using the method given

above may be tedious because of the necessity of determining

the functions X Therefore it is worth exploring the

possibility of finding simplified solutions. We consider

below two methods which simplify the solution of this type of

equations. One of them allows using the solutions for some

functions in the case when we deal with narrow-band paths with

envelopes having the form of these functions; the second met-

hod takes advantage of the special properties of the signals

generated in the process of space scanning in order to obtain

a simplified solution of (4.2.35).

The first of the methods described is of practical

importance because the signals in radio- and sonar location

represent narrow-band paths. Most often, they are pulse /104

series with carrying frequency f (see Ch. 1.2). A certaino

theorem can be proven, which simplifies the solution in the

case of narrow-band paths, if the solution of the corresponding

integral equation for the envelope is known. This dependence

will be called the theorem of displacement for integral equa-

tion, formulated in the following way:
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If sT is a solution of the integral equation
f

f- (6.1.5)

then the integral equation

2 fR(9 - t') co o),(t - ) ]'(t') dt' =

--- ( - to) [A cos wot ±Bgind] (6.1. 6)

has a solution in the form

(6 .1.7)
Sr = f(t) [A coscol + B sinw o] + j(),

where ry'-._p+PX(p ± +p.)
w rAt)=,-2(a -jB) (f -

-- pA) + X -(p - p")
WV(f -_f0 )

(6.1.8)

The proof of the theorem of displacement is given in Appendix
4.

Dependence [6.1.7] should be discussed further. Except

for the term A(t), this relation would mean simply that the

modulation of signal s(t) by a harmonic vibration results in

a modulation of the transformed signal sf(t) with the same

vibration. Since we are dealing here with narrow-band paths,

one might think that the expression of the type X( +) (p+p )/

W(f fo ) can be approximately taken equal to zero'. In the

general case the appropriate terms of the solution s (t) may,

contain functions 6 or their derivatives [6.4], and therefore

the spectra X(-)(p) are not narrow-band.
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The presence of the term A(t) in (6.1.7) can be easily

interpreted as follows. If this term were absent, then the

solution of (6.1.6) would not depend on the phase of the

carrier vibration which corresponds to the integration limits.

However, as seen from examples shown in Fig. 6.1.1, there may

be boundary conditions very different from each other. Since

expressions X (+ ) and X (- ) appearing in the solution of the

integral equation take into account precisely the effect of

boundary conditions, the form of solution (.1.7) b.comes /05

understandable. We should add that in some praczi:al appli-

cations (e.g. in pulse signals with duration time appropriately

shorter than T) the effect of boundary conditions may be

omitted and the term A(t) will then be absent.

Fig. 6.1.1. Examples of changes of boundary condition at
t=t2 , depending on the phase of the carrier vibration.

The theorem of displacement, proven above, has an impor-

tant physical interpretation. It is related to the justifica-

tion for using the so-called quadrature reception, utilized

in technical signal detection systems with correlated inter-

ference. Quadrature reception consists in applying two

receiving channels and a local generator, which gives two

vibrations differing in phase by . Considerations of the

paths shown in Fig. 6.1.1 have a physical interpretation in
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the form of transition states, which appear in systems of si-

nal displacement to the zero frequency. The question of quad-

rature reception will be considered below in Ch. 7, where
realization of optimal reception systems is discussed.

Now we will turn to the discussion of the solution of the

basic integral equation using the specific properties of the

signals generated in the course of space scanning.

In the preface to this chapter (and in Ch. 4) we assumed

a finite interval f_ = T. This is related to one of the

basic difficulties in solving the basic integral equation,

namely determination of the appropriate functions X andX

(see Appendix 3).

However, as follows from Ch. 5.1., in the case of loca-

tion, the reception of signals from detected objects occurs in

a manner defined by the characteristics of the directional beam,

which scans the space being scanned. The echo signal then has

the form shown in Fig. 6.1.2, i.e. the infinite series of scan- /106

ning pulses is "modulated" by a function defined by the direct-

ional characteristic of the antenna (see 5.1.6). In system

considerations we usually assume an approximation of this fun-

ction using a Gauss function [6.5-6.8].

This may be interpreted as if signal reception took place

for infinite limits, but with a weight function (imposed by the

characteristics of scanning) of such a character that in many

cases a finite time of echo duration is assumed.

Fig. 6.1.2. Echo pulses reflec- Fig. 6.1. 3. Perpendicular
ted form object. pulse "packet".
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Thus it is often assumed in the literature that the shape

of the echo signal envelope is simplified, and corresponds

to the sectional directional antenna characteristic [Fig. 6.1.3].

This simplifies certain considerations, since all pulses then

have the same amplitude. A notion of the effective quantity of

pulses is also applied in this connection, i.e. a number of

pulses with the same amplitude, which is equivalent to a signal

with a shape similar to that shown in Fig. 6.1.2 (cf. [6.5).

Undoubtedly a more realistic model of the signal will be

obtained, 'y taking into account the shape of the echo signal

envelope resulting from the continuous scanning process.

Thus if we denote this type of signal by sa(t-to) , the

integral equation in question may be written as follows:

SR(t - t') af(t'),t" = st - 14). ( 6 .1 .9 )

Using the Fourier transformation on both sides of (6.1.9) we

will obtain:

S () . f).. .. -

11-(f) (6.1.10)

where s{f)=S{(a)j. Sdtf= {(t)}, *(f) - spectrum coupled

with S (f).

Relation (6.1.10) directly defines the characteristic of

an optimal filter, as shown in Ch. 1.3. This relation has a

similar form as that for a "matched filter" (Ch. 4.2.); we /107

should remember, however, that s a(t) is not an individual echo

pulse, but a series of such pulses (Fig. 6.1.2).

We should mention briefly the problem of the physical

realizability of the filter defined by (6.1.10). It is easy to

see that for to=O such a filter cannot be realized, because its
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pulse response would not be zero for t <0 .However, by select-

ing appropriately large values for to0 it is possible to approach

the realization of .optimal filter characteristics using sys-

tems that are physically feasible. There is some formal simi-

larity with the method of Bode-Shannon, used in problems of

filtration and prediction [6.9], which involves solving a similar

equation. However, using filters with a very large delay would

not be useful in filtration and prediction, because in systems

of automatic regulation this could cause de-actualization of

data. In contrast, in systems of signal selection with passive

interference, the situation is usually different. The delay

time t 0in this case has a concrete physical interpretation.

Since passive interference is usually strongly correlated, the

filters used in appropriate detection systems are most often

composed of delay lines, with the delay equal to the period of

repetition of the scanning pulses (see 2.5 and Ch. 8). Approx-

imation of a given characteristic by systems of delay elements

in general requires the use of a greater number of such elements

for more accurate approximations [6.11]. Use of a greater num-

ber of delay lines causes an appropriate increase of the overall

delay introduced by the system. This results in the requirement

for introducing an appropriately long time to0 in ideal approxi-

mation of filter characteristic by physical systems.

We may add that in devices used in detection it is usually

not important if there are delays between the echo signal arri-

1 This is because both s (f') and W(--) are usually symmetrical fun-
ctions, and the pulse response of the filter is defined by
an inverse Fourier transform to (6.1.10). Of course, a condi-
tion of filter realizability could be imposed by requiring appro-
priate transfer functions without poles in the right half of
complex plane (as in optimal filtration theory, see 6.10). This
would probably be an indirect method, apparently not having any
advantage compared to solving the integral equation directly;
see also below concerning specific properties of filters real-
ized using delay elements.
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val and its imaging, as long as the delay is of the order of 1

sec. There are devices that consciously use this fact, large

screen projectors, which display the image-using film; these

devices introduce a delay of 5 sec or more ([6.5, 6.12]).

Meanwhile, modern technology allows the use of at most 2-3

delay elements in filter systems [6.13 - 6.15]. Thus, the /108

overall delay of practical filters t is smaller than several

times the repetition periods of scanning pulses. In radar

detection devices the pulse repetition period is cf the order

of 1-lOmS, and therefore t would be of the order of several

to several tens of milliseconds. Even for airplanes with velo-

cities of 2500km/hr the interval traveled in the time t would

thus be of the order of 1-10 m, while the accuracy of distance

measurement by stations for target detection is of the order of

1 km.

As indicated by the above considerations, the method dis-

cussed in this chapter leads to a considerable simplification

of the solution of the basic integral equation, and its assump-

tions are justified by the properties of the process of space

scanning, used in location. Equation (6.1.10) is of course

especially useful when we are interested primarily In the filter

characteristic as a function of frequency.

Let us consider in more detail relation (6.1.10). Spec-

trum W(f) is composed of a spectrum of heat noise with a con-

stant spectral density W0 and of a spectrum of passive inter-

ference W (f). The latter depends, as described in Ch. 5, bothP
on the properties of the scanning signal and on the reflecting

objects which are the source of passive interference.

As shown in Ch. 5.3, the autocorr'lation function of pas-

sive interference R(r) is defined by the formula:

R(r) = R (r)R R ,(r).co (2n.r). (6.1 . 11 )
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where RO(-,y! 4 r),Rj(r) are autocorrelation functions of: envel-

ope of the scanning signal, modulation of the echo signal

resulting from space scanning by the directional antenna, fluc-

tuation of passive interference, respectively (cf. eq. 5.3.7).
0

Denoting the product of functions R s and RA by Rs , we can write:

Si~R~)} jt J (r) p(r) = R(r)} * J ,(r)}, (6.1.12)

where sign * denotes the operation of convolution I
. Further, on

the basis of the theorem of Wiener-Chinchin [6.4] we have:

{1 ( } = v(J),(6 .. 13a)
= (6.1.13b)

(6.1.13c)

where W p(f) denotes the power spectrum of fluctuations of pas-

sive interference.

Substituting (6.1.12) and (6.1.13 abc) into (6.1.10)

we obtain:

S.00 CAW.) ,(
V+ W.(f)*W,,(f)(6.1.14)

This relation defines the characteristic of the optimal filter /109
(with assumptions given above) under conditions of both correla-

ted and non-correlated Gaussian interference. (6.1.14) will be

used below as one of the basic relations in determining the
characteristics of ideal filters in the case of coherent sig-

nals (see Ch. 7.3).

Analogous considerations concerning the simplified method

iSee footnote to (5.3.6).
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of solution may be also applied to (4.2.41) (the case of sto-

chastic signals; cf. relation (6.2.19) below).

6.2. Optimal algorithm of signal reception for correlated

interference.

Based on previous considerations, it is possible to deter-

mine the optimal algorithm of signal reception in the presence

of correlated interference. An interesting aspect of this
question will be the structure of the optimal receiver realizing

the appropriate signal processing.

We will first consider the echo signal represented as

follows:

In this equation A(t) is the function describing the envelope of

an echo pulse packet; are passive parameters which take

into account the effect of signal fluctuation. It is assumed

that the fluctuations are sufficiently slow to be taken as

occurring between packets 1 (see Ch. 5). These assumptions are

usually justified in the case of echoes for which the duration

time of a packet is smaller than the correlation time of the

reflected signal, e.g., for echoes from small jet planes.

Thus in this case we can talk of a coherent pulse packet.

In terms of detection this is a typical example of a signal

with passive parameters. Such parameters are here: ~ ~and

f,.The last quantity is a passive parameter in the sense

I We consider the optimalization of a pulse packet reception, but
not the reception between packets. The latter problem is rela-
ted to different problems than the ones considered here. They
are connected with the methods of so-called track while scan,
TWS [6.17].

137



fs=f w +fD, where fw is the known carrier frequency of scanning
signals, and fD is the Doppler frequency which in most radar

applications must be considered unknown.

Let us assume for a moment that fD is known. In this

case we deal with reception of a coherent pulse packet with an

unknown initial phase, with the possibility of fluctuation be-

tween packets.

As represented in Ch. 4, in order to define the optimal

algorithm for receiving signals with passive parameters we /110

determine the conditional probability:

P- [a(e,; ... ... e%)jy] = f- ... f. ' (S,; 9k ... 9.) Y1,

dP9,... dPe,... dP., (6.2.2)

where

e, ... e, ... 9.,)l - probability that signal s with unknown

parameters .9 e, 9... on . in9 was

transmitted;

P[8(91 ... L. ... 9 yI] - probability that signal s with defined

values of parameters . was

transmitted;

- probability distribution of parameter .9L

in space ea .

At the start we will determine the relationships for the

case of signals with a defined amplitude and frequency, which

may be written as follows:

( )= A() coo (2afd + 4 + 3). (6.2.3)

In accordance with Ch. 5. it is assumed that:

38, 0,<0, ,>2x. (6.2.4)
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As shown in Ch. 4 (4.2.31):

In P(sIy) - In (r + In P(() -- s(f).?(t)d f y~ste(t) d,
(6.2.5)

and the first integral in this equation is proportional to the

signal energy. The optimal reception algorithm with interfer-

ence is thus defined only by the second integral. We have used

the notation sfo because the signal is narrow-band, with known

carrier frequency (see previous chapter). From the assumption

of narrow-band nature of the signal and because of the theorem

of displacement (6.1.7, see also Appendix 4) it follows that:

sfo(t) = f(t) cos (2,rft + T- ). (6.2.6)

where sI - solution of the basic integral equation for the

envelope. Since ([6.13], eq. 6.4.11):

w e 1 exp y a(t) cos (2xf. , + +.,) d, = (lo[r6y)],-2x fy(6.2.7)

where 1o denotes the modified Bessel function of the zeroth /1ll

order, and

(6.2.8)

,(y) = f y(t) .,'(t) cos (24r/t) d( (6.2.9a)

(Y) = J y() sl() sin (2ial) dt,
(6.2.9b)

Because of the unequivocal relation between echo signal and in-

formation (see remarks before (4.2.17)) we obtain as a result:

In P(xIy) = const + In 1 [,tlY)]. (6.2.10)
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Since function in I is monotonic, the problem of optimal recep-
tion is reduced mainly to the calculation of functional 100

[6.19].

On the basis of these considerations, especially eqs.
(6.2.8), (6.2.9 ab) and (6.2.10), it is possible to define a

system realizing the optimal reception algorithm in the case of
a signal of the type (6.2.3). A diagram of such a system is

shown in Fig. 6.2.1.

I_

Fig. 6.2.1. Optimal receiver with known fD* - Local gener-
ator, 2 - Correlator, 3 - Correlator, 4 - Nonlinear quadrupole
(without inertia), 5 - Threshold system, 6 - Decision.

The correlators appearing in this system may be replaced, in

accordance with the considerations at the end of Ch. 4.2, by
appropriate linear filters. We will then obtain an equivalent

optimal system in the form shown in Fig. 6.2.2.

These systems are called quadrature signal reception sys-

tems, since signals differing by 900 in phase (quadrature sig-

nals) or two-channel systems [6.20] are used. A third system,
equivalent to the previous ones, can also be presented. This

system is shown in Fig. 6.2.3. It differs from the system in
Fig. 6.2.2 in that the role of quadrature terms, two visual

filters, and systems adding the squares of signals originating /112
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from each channel is carried out by a single filter and an

envelope detector. But this filter differs from filters in Fig.

6.2.2 because it is a high-frequency filter. Its characteristic

is defined by (6.1.13). In addition, the characteristics of

filters in Fig. 6.2.2 are displaced to the zero frequency by the

characteristics of filter in Fig. 6.2.3.

Fig. 6.2.2. Equivalent realization of optimal receiver with
known fD" 1. Local generator, 2. Linear filter, 3. Linear
filter, 4. Nonlinear quadruple, 5. Threshold system, 6. Decision.

The diagram shown in Fig. 6.2.3 corresponds in practice

to the so-called system of stationary clutter reduction at the

intermediate frequency.

Fig. 6.2.3. Equivalent form of systems from Figs. 6.2.1. and
6.2.2. 1. Linear filter, 2. Envelope detector, 3. Nonlinear
quadruple (without inertia), 4. Threshold system, 5. Decision.

In the case when the signal exhibits amplitude fluctua-

tions in addition to phase fluctuations, it may be represented

in the form:

(t;;)= 3A(t)cus(2rf. + 9 - 9.) (6.2.11)
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Taking the assumptions which follow from Ch. 5, the random var-

iables o, and 3, will be defined as follows:

1. random variable 3, has the Rayleigh distribution:

P, -O ep ) -- 2 , 3i >

o 9,<o (6.2.12)

2. Random variable A has the uniform distribution

-, 0 3 . 2x

,) <); 3:>. (6.2.

The mean value of signal amplitude fluctuations is equal in

this case to

On the basis of (6.2.2) and (6.2.5), using (6.2.7) and

substituting (6.2.12) and(6.2.13), we can write:

In P(-:2 y) = ,'onst -J - A(CY) e ( .2.14

The integral appearing in the above formula is the so-

called Weber integral; using its known solution C6.21], we

finally obtain:

h, P ....,) = ,,.t -- , -,( 6.2.15)

where C denotes a constant proportional to the mean signal

energy, while ,iy) has a meaning analogous to that in (6.2.8)

[6.19, 6.20].

Comparing (6.2.10) and (6.2.15) we can note that the
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systems realizing the optimal signal reception algorithm in

the form (6.2.11) are similar to those considered previously

for a signal of type (6.2.3); the difference is only in a

different nonlinear treatment. Thus the systems of optimal

reception of signals with phase and amplitude fluctuations can

be represented in a form similar to Fig. 6.2.1-6.2.3. In the

system corresponding to Fig. 6.2.3 we can assume in this case,

that the detector has a characteristic of type 2 (cf. also

[6.20].

This difference is not very important in the case of

weak signals because, as we know [6.18]:

tn [1{2) - ') . c < L.

We should mention that in practice often systems are intro-

duced in which the characteristics of some elements differ from

the optimal; this is caused by attempts to simplify the device.

Of course this leads to some decrease of detectability. An ana-

lysis of a suboptimal system in which one channel of the quadra-

ture system has been omitted, was given by Veinshtein and Zuba-

kov [6.20]. Such systems have been used in the first devices

which used the correlation of passive interference for detecting

signals in its presence [6.5, 6.22, 6.23].

The case of replacing the optimal addition of quadrature /ll

signals by modulus addition was considered by Mitiashev [6.24].

if fs=f +f is also a passive parameter, then eaording

to (6.2.2) and utilizing (6.2.10) and (6.2.151, the conditional

probability should be averaged according to fD' creating expres-

sions lik:
f p(fD) exp [0(7)] fLQD

(6.2.16)
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where

P(D) - probability that a signal with Doppler frequency fD

had been transmitted;

- set of possible Doppler frequencies, and

{0[ 1W)] for signals of given amplitude

C[qIg)]' for fluctuating signals

(6.2.17)

The question of determining expressions of type (6.2.16)

is difficult. The kind of functions appearing here does not

allow to reduce such an expression to a form permitting a simple

technical realization; it is only possible to model operation

(6.2.16) approximately with the help of appropriate systems

([6.25,] p.151; see also [6.26]). It is easy to grasp the

essence of these problems by considering the case when fD can

have a finite number of values: fn = A I,... fkl .... f.- The probabi-

lity distribution p(fD ) is then of discontinuous type. There-

fore we have finite probabilities p,=P(fD= f),P, .... =P(l=f-)..P.

it is easy to note that averaging according to fD consists of

generating an appropriate sum of terms similar to those in the

case of known Doppler frequency, but with weights p!,...pk,...

Pn [6.25]. In the case of uniform distribution of Doppler fre-

quency probabilities in some interval (the justification of such

an assumption is discussed in Ch. 5), Pl= Pk = Pn" Then aver-

aging according to fD is obviously reduced systematically to

appropriate parallel combination of terms, each of which would

represent a system similar to that of Fig. 6.2.1 (or its equiva-

lent - as in Fig. 6.2.2 or 6.2.3), optimal for the appropriate

Doppler frequency fk* We will obtain in this case a system

shown in Fig. 6.2.4.

An important aspect of this diagram is the parallel conn-

ection of elements, consisting of linear filter and nonlinear

element connected in series. The possibility of ideal replace-

ment of this sytem by a simpler substitute diagram, composed of
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one linear filter with "average" frequency characteristic and

one nonlinear elemert is not known [6.25]. What remains then

is the option of optimizing the number of parallel channels of

filters and their appropriate formation. Similar questions have

been raised in the literature [6.27-6.30, 6.37].

In some practical realizations there is a possibility of /115

reducing the number of filters by using sequential systems

[6.31].

A method of multichannel coherent detection approximation

was given by Reed and Swerling [6.38]. In this system it is

theoretically possible to obtain an aroitrarily close approxima-

tion by using iteration methods. The corresponding reception

system does not contain a set of narrow-band filters, but many

multiplying and delay systems. Their number increase for the

more accurate approximation of coherent detection desired [6.38] !

The optimization of reception systems for signals between

the coherent and noncoherent class, i.e. for signals with some

phase fluctuations, was considered (for the case of known fre-

quency of the scanning signal) in Kulikjwski's work [6.32]. For

noncorrelated phase fluctuations such systems may be realized in

a finite form, containing quadrature systems and some correction

terms.

In the case of correlated phase fluctuations in finite form it

is possible only to realize reception systems for weak phase

fluctuations [6.32].

Let us now consider the case when the echo signal has

-andom phase fluctuations, among which it is impossible to select

1 Some other possibilities of realization were also mentioned in

Ch. 10.3.
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II

i in4e I

- - - - - - - - - - - -

4,7/

Fig. 6.2.4. Optimal reception system with unknown f. 1. Fil-
ter, 2. Detector, 3. Nonlinear term, 4. Nonlinear decision term,
5. Decision,

a regular component caused by the Doppler effect Such signals,

as mentioned above (see Ch. 4 and 5), may be considered as a re-

a!-zation of a general signal representing a stochastic process,
using the methods described in Ch. 4.2 for optimization of

reception systems.

In considering this question we will use the method where

the filter "whites out" the interference spectrum, which allows

utilizing the results obtained with the assumption that inter-
ference has the form of white noise. This method consists in

determining the characteristic of the filter correcting the

power spectrum of real interference such that it becomes a spec-

1Note that this applies only to the detected signal and is caused
by the reflecting properties of objects considered here. In con-
trast, further considerations assume a coherent scanning signal,
which is related to appropriate characteristics of passive inter-
ference.
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trum with a uniform density (and therefore identical to the

spectrum of white noise). It is possible in turn to use the

methods and results of determination of the optimal reception

algorithm in the presence of white noise 1.

As is easily seen, in the case considered, the modulus of

the frequency characteristic of the "whiting out" filter is

defined by the relation:

F'(J) = Lw°FiID' (6.2.18)

where

W 0 - spectral density of noncorrelated noise;

Wz (f) - spectral density of correlated interference.

It should be remembered of course that the "whiting out"

filter also modifies the signal spectrum, which will be taken

into account in later considerations.

The system realizing the optimal reception algorithm may

be represented in this case, in accordance with Ch. 4.2 and the

above remarks, in the form shown in Fig. 6.2.52. The charact-

eristic of the second linear filter remains to be determined here.

As shown in Ch. 4.2, it is possible to determine it with the

help of appropriate integral equations.

l fqajcc fat Oter

Fig. 6.2.5. Optimal receiver for stochastic signals. 1. whiting
out filter; 2. linear filter; 3. quadratic detector; 4. integ-
rator; 5. decision term; 6. decision.

iThe justification of the method of "whiting out" filter is given
in Chapter 3 of the book by Gutkin [6.33].
2Some specific aspects of integrator operation in this system
are described in Appendix 7.
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Taking into account the specific properties of the paths /117

that have to be considered in location problems, we can intro-

duce simplifying assumptions, identical to those described in

the previous chapter. Equation (4.2.42) can then be rewritten

in the form:

[2?(.t - t") t- TV,6( tdt - t(6.2.19)

where R' - autocorrelation function of the signal at the output
S

of the "whiting out" filter.

Using the Fourier transform on both sides of the above

equation, we will obtain:

o w(f) '(6.2.20)

where W s(f) - power spectrum of the signal after passing through

the "whiting out" filter.

Since, as indicated by (4.2.41) (see also [6.34]):

2,')2 = j x('t"-!", )" (6.2.21)

finally, the modulus of the transfer function of the second

filter will have the form:

=I f~lf) ii I '

H'0 "', (6.2.22)

On the basis of these considerations it is thus possible to

determine the modulus of the effective transfer function of an

optimal filter, for conditions where both correlated and non-

correlated interference is present, when a stochastic signal is

being detected.
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This filter includes (Fig. 6.2.6) two serially connected

filters: a "whiting out" filter and an optimal filter for

reception in noncorrelated interference, so that the modulus of

its transfer function can be defined by the formula:

'FI,(f) F() -Pt (6.2.23)

Because W(f) = wT, ,,,f) 2  , substituting (6.2.18) and (6.2.22)

into (6.2.23) we will obtain:

~ire

I I (6.2.24)
i (1Wo - f) I -I + W(f) Wo-- (f) ( . 2F4f
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7. Characteristics of optimal filters. /122

In previous chapters we have defined the optimal algo-
rithm for reception of fluctuating signals with correlated
interference and we have presented the systems realizing optimal
reception. As indicated by the considerations above, an impor-
tant role is played in these systems by the nonlinear pre-
detection filter. W1e will discuss below the characteristics of

such filters in detail; in order to determine their character-
istics we have to consider the spectra of signals and of inter-

ference.

7.1. Signal and interference spectra.

The signal in radar applications is usually a series of

short pulses (cf. Ch. 2 and 3). Let us denote the spectrum of
an individual scanning pulse by S 1(f). As we know, the spectrum
of a coherent series of such pulses, repeating periodically, is

represented in the form of a sum of the Dirac function 6([.3

[7.23, Chi. 5):

where T p- period of pulse repetition; f = 11T
p

If, in turn, the series of pulses is modulated by the path
corresponding to the directional antenna characteristic in the
course of space scanning, then we can write the following on the

basis of the theorem of modulation [7.3J.

1 is easy to see that (7.1.1) represents a Fourier series for
an infinite series of periodically repeating pulses, written in
a manner stressing the relation with the spectrum of an indivi-
dual pulse.
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s.(0) = Saf - ,110) S,(,f,i).... (7.1.2)

where s4J) denotes the modulation spectrum generated by space
scanning using an antenna with directional characteristic (see

Ch. 5.2.).

r

Fig. 7.1.1. Formation of' the signal spectrum structure: a-pulse
series in time; b-spectrum, of' individual pulse; c-spectrum of
pulse series; d-function modulating pulse series in the process
of space scanning; e-spectrum of the received (modulated) pulse
series.

The relationships described above are illustrated in Fig.
7.1.1 where the formation of the structure of echo signal spec-

trum is shown.

It should be noted that in practical applications some of
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the quantities appearing in (7.1.2) are usually of different

order. Thus in radar the width of pulse spectrum S (f) is

usually of the order of l0- 1 - 10 MHz, repetition frequency f

is (in detection devices) of the order of hundreds of Hz,

while the width of spectrum s4 (J) is usually of the order of

several to several tens of Hz. This is why we can write approxi-

mately:

s.(J , ,( ,,i
..... f (7.1.3)

(7.1.3) indicates that the spectrum of echo signal is the /124

product of the periodic factor in frequency domain (with period

f p) and a non-periodic factor (see Fig. 7.1.1).

In the case of stochastic signals, their spectral density

(power spectrum) has to be determined (cf. Ch. 6.2). In radar

there is a frequent situaticn when amplitude and phase fluctua-

tions are present with weak correlation between pulses. Such a

signal, as mentioned in the previous chapters, is conveniently

represented in the form:

8(1; 91; 3) =-- 91(t) Amt sin (2nf t) + S2(t) Al(t) cos (2nf~t). ( 7-1.4 )

As we know, (cf. Ch. 5.3 and Appendix 2), the autocorre-

lation functions of processes 9(Y) and Jim are equal:

R =(T) = R,,(r) - BW, (7. .5)

and the autocorrelation function of signal sIt;9,) is deter-

mined by the fcrmula:

R() = r) RA() coS (2f.r), (7.1.6)

where R,(r)- autocorrelation function of the envelope of signal

A(t).
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Assuming that the signal fluctuations have an effective

correlation time much longer than the duration time of a pulse,

but considerably shorter than the pulse duration time, we will

obtain:

M.r) -_P'1)

i.e., the normalized signal autocorrelation function then has

a form approximately similar to the normalized autocorrelation

function on an individual pulse 1 .

On the basis of the Wiener-Chinchin theorem [7.1] of

course the normalized power spectrum of such a signal will also

have a form analogous to the normalized power spectrum W (f):

|V,(f) H1(f)

i',(O) 1r1() (7.1.8)

The interference spectrum W z(f) is composed of the spec-

trum of noncorrelated white noise with uniform spectral density

W0 (generated e.g. by thermal noise) and of the spectrum of

correlated interference Wk(f):

WD =W,+Vk(f (7.1.)

Spectrum Wk(f) can be determined using (5.3.8):

IV*(f) I,(f)* W(f)* JV, •f). (7.1.10)

Sometimes it is more convenient to use the equivalent relation /125

(in accordance with the Wiener-Chinchin theorem):

1Autocorrelation function of an individual pulse is defined here
as in ([7.20], p. 162).
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ere
Ra(r),R.(r)(t) - autocorrelation functions of the transmitted

signal, fluctuations caused by space scanning,

and fluctuations of passive interference,

respectively;
- Fourier transform.

Denoting by Wf(f) the spectrum of fluctuations caused by
both space scanning and by the variability of passive interfer-

ence,

W1(f) = WH'(f) "(f), ( 7 1. 1. 12 )

it is possible on the basis of the theorem on modulation of sta-
tionary stochastic processes, proven previously by the author,
([4.4], Appendix 5) to write the power spectrum Wk(f) in the
form:

w /)= Y' ru f - nf ) H'1 ,,,n ,).( 7 .1 . 1 3

where IV,,(f = ,,,()', and S,( f)= S 1(s ) • Similarly, (see eqs.

7.1.2 - 7.1.3) we can write approximately:

The spectrum of correlated interference may also be divided into
two factors, one of which is periodic in frequency domain, and
the other is non-periodic. It is seen from (7.1.14) that the
non-periodic factor is determined by the properties of the
transmitted signal (as in eq. 7.1.3), but the periodic factor is
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determined by the properties of signal fluctuations and the pulse

repetition frequency.

On the basis of these relationships we can consider the

specific frequency characteristics of optimal filters.

7.2. Optimal filter for stochastic signals.

In this chapter we will consider the characteristics of

optimal filter appearing in the system shown in Fig. 6.2.5. As

derived previously (Ch. 6.2, eq. 6.2.26), the modulus of the

transfer function of this filter is defined by the formula:

Fopd V, - 11±IJ(f) (7.2.1)

As shown in the preceding chapter, for the case in question, i.e. /126

a signal with fluctuations practically independent between pul-

ses, Ws(f)=W1 (f). Using (7.1.13) we will obtain:

l ot I - , I/,T , -
IV + Iy (f- mf) W,.(mf,) (7.2.2)

Inm---

Because of (7.1.14), we can write:

-W (f), f - ( 7.2.3)

In order to stress the structure of the filter, (7.2.3) can be

transformed as follows:

Win,,(.)f) 
) I mfVP

.... (7.2.4)
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Since .. = we will finally obtain:

oFp,(f) = v O

. . . I/f -,t.S 1 ( , ,f) \-- _ (7.2.5)

7t is easy to note that in the case when noncorrelated noise may

be omitted (i.e. when W0 =O), the optimal filter contains twc

serially connected filters. The first, with a transfer functon

defined by the first term in (7.2.5) is the so-called Urkowitz

filter [7.5, 7.6]. The second filter has a transfer function
which is periodic in frequency domain; it is the so-called per-

iodic filter [7.7]. The Urkowitz filter carries out "!in t ra-

periodic" filtration, i.e., filtration of individual pulses;

the periodic filter carries out the "inter-periodic" filtration,

using the correlation of passive interference (Fig. 7.2.1). :7

should be noted that the Urkowitz filter is not very effective

in terms of signal detection against a background of correlated

interference, but is extremely sensitive to noncorrelated noise,

i.e., it worsens signal detectability in thermal noise [7.19].

Thus the optimal receiver (in the case discussed here) carries

out effective signal detection primarily thanks to the operation

of the periodic filter.

In the case when passive interference, Wk=O , can be

omitted, then, as expected, the optimal fIlter takes the form

of a filter matched to the spectrum of an individual pulse,

i.e., IF(f)W IS1 (f)l (cf. (7.2.1).

In most practical cases the passive interference, when
1

present, has an intensity much higher than thermal noisel. The

1
e.g. stationary clutter in radar devices may exceed the level

of noise by several tens of dB; in some cases the relative level
of stationary clutter reaches even 100dB (see Ch. 5 and [7.3,
7.9]. 158



optimal filter thus approaches the form shown in Fig. 7.2.1,

and the filter of correlated interference has a characteristic

approaching closely periodic. We will consider the character-

istics of such a filter below. As indicated by the name, in

order to know the characteristic of a periodic filter it is

sufficient to determine its path within the limits of a single

period. Because the width of both spectra S1 (f) and W1 (f) are

in practice about 10 times greater than f (which is the periodp

of the frequency characteristic of the filter), the variabilty

of S,(f) and W1 (f) may be omitted
1 within this period. Thus,

on the basis of (7.2.5) and the above considerations, we can

write the formula determining the transfer function of the per-

iodic filter within a single period:

(7.2. 6

Fig. 7.2.1. Realization of an octimal filter by connecting in
series an Uirowitz filter and a periodic filter. I.optimal
filter, 2. Urkowitz filter, 3. periodic filter.

Fig. 7.2.2 represents the normalized graphs of the modu-

lus of the transfer function for a periodic filter _op..... r

various spectral widths Af= 2 6f, assuming a Gaussian shape of

W,(f); (cf. Ch. 5). Because of the symmetry (Fig. 1 .2.2a), the

exact graph 4.2.2b shows only the path within half of the per-

iod. In calculations the ratio of the maximum soectral density

C.. text between (7.1.2) and (7.1.3). Of course, omitting the

variability in S_£f) ajd (f) refers only to the characteristics
of the periodic -filter,- and does not imply discarding the
serially connected filter for individual pulses.
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of correlated interference Wf(f=f p) to the spectral density of

noncorrelated interference W was assumed to equal 30 dE-.

a

001'0

0.8

L L3

0,4

0 Ol ,2 0,3 4 Q5
f
fp

Fig. 7.2.2. a - modulus of the transfer function of an optimal
periodic filter; b - transfer function of an optimal periodic
filter at various spectrum widths of correlated interference
(Gaussian interference spectrum).

In order to illustrate better the character of relation-

shi (7.2.6) Fig. 7.2.3 shows a three-dimensional graph of the

In considering Fig. 7.2.2 one should remember the definition of
the ratio of intensities of the correlated and non-correlated
interference assumed here, because in practice different defini-
tions may be encountered, leading to ambiguities.
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normalized moduli of transfer function IF0  (f)I as a function
opt-

of two variables: f/f and ;f,, .

The relations allowing to determine the spectrum width

Af for known properties of interference and parameters of space

scanning are presented in Appendix 6.

For clarification we have shown: in Fig. 7.2.4 - the

width of szectrum AP as a function of carrier frequency of /130

the scanning signal and the coefficient a, characterizing the

properties of passive interference; in Fig. 7.2.5 - normalized

width of spectrum A-141 and the width as a function of the num-

ber of echo pulses N, falling within the beam width, in Fig.

7.2.6 - the total width of the correlated interference spectrum

A as a function of the widths A and A A

ff Af.

Fig. 7.2.3. Three-dimensional graph of the characteristics of
an optimal periodic filter (Gaussian interference spectrum).

As an example, for a radar device operating at a wave-

length appr. 23 cm with a pulse repetition frequency of 400Hz,

with antenna beam width 1.20 and the velocity of scanning in

azimuth equal to 6 rpm, we will have:
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Fig. 7.2.4. Width of spectrum Ap as a function of carrying
frequency f 

z

'/

A4 , J 6a to .O 0 4 06080'0t 200

Fig. 7.2-5. A. Aand 6f/f as functions of the number of pulses

falling within beam width.

P - assuming on the average for reflections from ground

Af

f objects coefficient a=10 18 (see eq. 5.3.4), J'-=2Hz

(from Fig. 7.2.4);

A A - for the parameters given above, N_13, and _21Hz,

(from Fig. 7.2.5).
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. I

Fig. 7.2.6. Auxiliary normogram for determination of Af when

A and AP are known.

As a result, the total width of correlated interference spectrum

Af is about 21Hz (from Fig. 7.2.6), i.e., Jff,,-.05 As can be

seen, the main factor is in this case the effect of space scan-
16

ning. If a = 10 is assumed (which corresponds to e.g., man-

made dipole interference), then we have J'>,H.z and J -2 z I.

i.e., Jf ,,u. . In this case the effects of interference fluc-

tuation and space scanning are approximately the same.

The practical significance of the results obtained should

be discussed further. As we know, the simplest periodic filter

used in stationary clutter reduction systems is the so-called

single compensation system, composed of a delay line with a delay

time T and a subtracting system (Fig. 7.2.7 a) [7.8]. The fre-P
quency characteristic of such a filter is represented by curve

$=O in Fig. 7.2.8. The signal compensation system is similar to

the optimal filter only in terms of the position of the minima

and maxima of the characteristic, whereas the path of this char-

acteristic itself is significantly different from the shape

obtained for the optimal filter, for any j4'.
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D

Fig. 7.2.7. Block diagrams of simple periodic filters: a - sin-
gle subtraction system; b - single subtraction system with feed-
back; c - double subtraction system; d - double subtraction
system with double feedback.

Characteristics approaching the optimal ones can be ob-

tained in practice with the help of mor~fco lic~ted systems

with delay lines. For a value of f/f the characteristics

approaching optimal can be obtained using a single compensation

system with negative feedback (Fig. 7.2.7 b). The characteris- /132

tics of such a system for various values of the feedback coeffi-

cient are shown in Fig. 7.2.8 [7.10]. Observations and measure-

ments in practical situations have confirmed the better effective-
ness of stationary clutter reduction using appropriate feedback,

compared to operation without such feedback.

For small values of 6,1!, it becomes necessary to use a

greater number of delay elements in the periodic filter. The

double compensation system (Fig. 7.2.7 c) has a characteristic

shown in Fig. 7.2.9, curve C [7.11, 7.12]. Such systems are most

often realized using memory tubes [7.13]. A better approximation
to optimal characteristics can be obtained, using a double sys-

tem with double feedback (Fig. 7.2.7 d). In this system it is
possible to obtain the characteristics shown in Fig. 7.2.9 [7.14,

7.15]. It is evident that by using such a system a relatively
good approximation of the optimal filter for various values of
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Fig. 7.2.8. Transfer function Fig. 7.2.9. Transfer function
of the filter shown in Fig. of the filter shown in Fig.
7.2.7. b for various values of 7.2.7 c (curve C) and transfer
the feedback coefficient a. functions of the filter shown

in Fig. 7.2.7. d (curve Dl,
D2, D3).

j,. is possible. This is also in agreement with the general

theory of periodic filter synthesis, which leads to the conclu-

sion that an approximation of a given characteristic is better

when an increased number of delay elements is used in the appro-

ximating system [7.7, 7.15]1

However, for technical reasons the use of a larger num- /1 4

ber of delay elements is difficult. In practice, periodic fil-

ters are rather complicated devices. In addition, there are

difficulties in accurate adjustment of the delay of individual

delay elements. For these reasons there are many descriptions

in the literature of practical realization of systems of the

type shown in Fig. 7.2.7. d [7.16, 7.17]. The use of more com-

plicated systems would allow a closer approximation to the

optimal characteristics, in particular, the improvement of the

IAn outline of the theory of periodic filters is contained

in Ch. 8.
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Fig. 7.2.10. Transfer function of' an optimal periodic filter
at various widths of the correlated interference spectrum

(interference spectrum of the type __ I
,a,

- S'A'

Fig. 7.2.11. Three-dimensional graph of the characteristics
shown in Fig. 7.2.10.

effectiveness of reducing narrow-band passive interference, but

it would require further technical improvements.
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In the case when the autocorrelation function of the

interference is exponential (i.e., the ii erference spectrum is

proportional to 2 I2 see Ch. 5.3), the modulus of the nor-
a +w~

malized transfer function of an optimal filter assumes the shape

shown in Fig. 7.2.10. Similar to the previous analysis, Fig.

7.2.11 shows a three-dimensional graph of normalized transfer

functions as a function of two variables: f/fp and 6f/fp.

7.3. Optimal filter for signals with a distinct Doppler com-

ponent.

As shown in Ch. 6.2, in the case of signals with a dis-

tinct Doppler component, unknown a priori, the optimal reception

algorithm is realized with the help of a multichannel receiving

system (Fig. 6.2.4). The optimization of such a system in a

real situation must take into account many additional factors,

such as interchannel correlation, partial overlapping of channel

characteristics, usefulness of introducing simplified, linearized

characteristics for nonlinear elements, etc. Therefore it is

not practically possible to represent in general the characteris-

tics of the appropriate filters in the form of a graph similar

to Fig. 7.2.2. It is necessary to make calculations for specific

assumptions. However, one may consider the relationships which

encompass some general asymptotic properties of the optimal

multichannel system.

The transfer function of an optimal filter appearing in

the k-th channel of the system is defined by the formula (cf.

eq. 6.1.10):

s( -" (S7 3.1)
167f + W+k(f)
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and Sk(f) - spectrum of an echo pulse signal at Doppler fre-

quency equal to f .

Substituting the relations in (7.1.2) and (7.1.13) in /135

(7.3.1) we obtain:

S S(f - if, - A) 31 l(f, - fk)

Fif(f) = .- - j 6XIfl.).

e!

Wo + m f - 1,,) ]FR(?nf,)
(7.3.2)

Using relation (7.1.3) and(7.1.14) we can write:

S *(f - f) o S (I - if, - fi.)

F,(f) : e/2f.
wi , -- Wv,,(f) " T V (f - "nf )..... (7.3,3)

In order to stress the structure of the filter we will trans-

form (7.3.3):

S.(f - if, -)=)

k;) 1:7 _ -
S+ ,, |' f(f - inf,)

v.(f) .. . (7.3.4)

In the case when the interval of possible Doppler fre-

quencies is much smaller than the spectrum width of an indivi-

dual pulse1 , we can assume S(f-fk) ,%(.S) , obtaining:

F o-(f)--
.(f) -_____ "

(7.3.5)

iThis is a situation typical for the majority of pulse radar

stations for detection, where fD are of the order of

102 _ l03 HZ, and spectrum widths are of the order of 0.1 -

10MHz.
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As it is easy to see, the optimal filter Fk(f) is composed of

a serially connected Urkowitz filter (cf. Ch. 7.2) and a per-

iodic filter, whose characteristics are defined by the second

term of (7.3.5). Intra-periodic filtration (by the Urkowitz

filter) may be common to all channels (Fig. 7.3.1).

An important question is the study of filter structure

depending on fk' especially if large values of k are possible,

i.e., a large number of channels. The large number of channels

is related to use of a signal with narrow spectrum, where a

large number of pulses fall within the antenna beam width. The /136

width of the band of a single channel is then small, which

results also from the relations given above.

Assuming that the width of the band of echo signal spectrum L

and the width of the spectrum of correlated fluctuations A,

is small in comparison with the repetition frequency f
p

(d.;<< f,) , we can write the formula for the modulus of the

transfer function of the periodic filter k" ithin a sing-

period as:

'I" +y($) (7.3.6)

where nf, <f(n+ 1)f; f&< f.

Fig. 7.3.1 A system of filters with common intra-periodic fil-
tration. 1 - Urkowitz filter, 2 - periodic filters.
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With the assumptions introduced here, the maxima of the charac-

teristics of narrow-band filters will be at f f k' Thus we

can write:

const

Max LI C( It' + VW,(fD (7.3.7 )

This relation has an interesting interpretation, which

allows us to understand the general structure of a multichannel

filter system. Comparing (7.3.7) and (7.2.6) we can see that

the envelope of the maxima of transfer characteristics of narrow-

band periodic filters of a multichannel system has the same shape

as the modulus of the transfer characteristic of an optimal

periodic filter in the case of stochastic pulse signals (see

preceding chapter). This is illustrated in Fig. 7.3.2.

This conclusion is of considerable practical importance

because it allows rapid orientation in the structure of a multi-

channel filter system and facilitates approximate estimates of

the requirements which should be fulfilled by such filters.

The above result may also be presented in a different

manner. The system shown in Fig. 6.2.5 does not use completely

the information related to the Doppler displacement of signal

frequency, while the system in Fig. 6.2.4 utilizes the infor-

mation about the existence of such a displacement. It may be

noted that both systems filter the spectrum of the arriving /137

signals similarly in the sense of general utilization of the

appropriate spectrum ranges. However, in the first case one

stops at the reduction of those fragments of the spectrum which

contain especially passive interference, using subsequently the

so-called noncoherent signal integration. In contrast, in the

second case we use a more subtle filtration within the non-

reduced portions of the spectrum. It is easy to see that it is

equivalent to the coherent signal integration.
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Fig. 7.3.2. Envelope of the transfer function of the filters
of an optimal multichannel receiving system (with Gaussian
spectrum of correlated interference).

We should add that the two optimal reception systems men-

tioned represent two extreme cases, related to extreme signal

models. In practice, depending on the target properties within

a given frequency range, either system described may be more

appropriate; also, intermediate situations are possible (see pre-
1vious chapter) .The interpretation of the optimal process of

sig~nal reception mentioned above may have other practical con-

sequences also.

A multichannel system is much more complicated and more

difficult to realize than systems represented in Fig. 6.2.5 /138

or 6.2.7. Even by using such solutions as a common delay line

for several channels [7.18], the multichannel system will be

1We should note that there are also possibilities of future use
of systems which automatically match the properties of interfer-
ence. E.g., when only matching with the spectrum of passive
interference fluctuation is needed; it is easy to imagine a mnod-
ification of the multichannel filter system by using some auto-
matic regulation of intensification in individual channels.
Matching different types of detected signals would require more
complicated systesm.
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very complex. Therefore it may sometimes be justified to pur-

posely give up information about the existence of Doppler cis-

placement of signals. At the cost of a possible decrease in

detectability, one obtains a simpler receiver system. The use-

fulness of such an approach obviously depends on the specific

requirements in any given situation.

In summary, this chapter has presented the methods for

calculating the characteristics of optimal filters for detection

of location signals in the presence of correlated and non-

correlated interference, as well as a discussion of the practical

realization of such filters taking into account the state of

technology in this area at present. Numerous graphs were inclu-

ded to facilitate planning of various devices.

The following chapters will describe (based on the above

results) the problems of the realization of the given character-

istics of periodic filters and the problem of the signal detec-

tion effectiveness in the presence of correlated and non-corre-

lated interference.
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8. Outline of the theory of intermittent (periodic) filters. /140

Some properties of certain periodic filters were mentioned

in the preceding chapter, but this problem requires a more detail-

ed discussion. For the sake of clarity we will first present in

this chapter an analysis of the properties of less complicated

systems, using simple methods. Next, we will discuss more advan-

ced theoretical methods, especially useful in considering perio-

dic filters, both in terms of analysis and synthesis.of such

filters. Because of space limitations, all questions cannot be

discussed at length; more detailed information concerning many

points may be found in the references cited.

8.1. Transfer functions of some intermittent (periodic) filters:

The simplest periodic filter applied in stationary clut-

ter reduction is (as mentioned in the preceding chapters) a sys-

tem composed of a delay line with a delay equal Tp and a sub-
1

tracting system (Fig. 8.1.1) .

The transfer function of such a system can be calculated

from the relation [8.1]:

F((8.1.)

where Se (w) - signal spectrum at filter input; S (w) - signal

spectrum at filter output.

Because the signal at the output of an ideal delay line

is delayed 1', a time T by the input signal
P

(8.1.2)
1To facilitate our discussion, we assume in Fig. 8.1.1 a nota-

tion for the subtracting system which shows the signs of the
signals being subtracted.
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in accordance with the theorem of displacement in the time dom-

ain ([B "], C'n. ., [3.2]) we 'ave:

(8.1.3)

As indicated by Fig. 8.1.1, /141

,S'(W) - sf) - S .(w). ( . . 4 )

Substituting (8.1.3) and (8.1.4) into (8.1.1) we obtain:

U00)) U, /W)e s '

Fi~o) 1 e.(8.1.5)

Fig. 8.1.1. Single subtracting Fig. 8.1.2. Modulus of trans-

system. fer function of a single sub-
traction system.

After simple transformations, we can write the modulus

of the transfer function of a single subtracting system:

IF, = 2 .in

FiWf s'ill ('rff

Fig. 8.1.2 illustrates the relation obtained above1 .

A more accurate graph, for - , is shown (in normal-

ized form) in Fig. 7.2.8, curve 3 = 0.
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A double subtracting system (Fig. 8.1.3) is a serial
connection of two single systems. Because the resultant trans-

fer function of a chain of quadrupoles is equal to the product

of the transfer functions of its elements, we can obtain the

transfer function of a double subtraction system by taking a

square of the righthand side of (8.1.5):

(8.1.7)

It is easy to note that on the basis of the above rela-

tion the double subtraction system is theoretically equivalent

to the systems shown in Fig. 8.1.24. It should be mentioned,

however, that from a technical point of view the double system

(Fig. 8.1.3) has certain advantages. This is easy to illus- /1242

trate by assuming that at the input of the systems being com-

pared there is an ideally constant echo. In the case when the

amplitude of one of the signals being subtracted in the first.

subtracting systems in Fig. 8.1.3 (e.g., as a result of a change

in line reduction, or enhancement of one of the intensifiers),

the interfering signal will be reduced by the second system.

However, if the amplitude of one of the delayed signals changes

Fig. 8.1.3. A double subtracting system.

a2 2

Fig. 8.1.24. Systems equivalent to a double subtracting system.

in the systems shown in Fig. 8.1.24, the uncompensated difference

will appear at the output. The problem of the optimal system

configuration will be discussed in more detail in Ch. 8.4.
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From (8.1.7) we can determine the modulus of the trans-

fer function of a double subtracting system [8.3':

, , r )Tp

2
-4 sin 112 ,)

iF2 f)t = 4,, (ir/ff). ( 8. 1.8 )

Fig. 8.1.5 illustrates this relation

C '/p / r, ?,rp.I LL

Fig. 8.1.5. Modulus of the transfer function of a double
subtraction system.

Analogously, for the L-fold subtraction system (Fig.

8.1.6) we can write:

(8.1.9)

and

( nL.2. [sLrill( '(8.1.1

Of course, the system of L-fold cascade subtraction corres- /143

ponds to equivalent systems with modified configuration, as

discussed in comments to (8.1.7).

As mentioned in Ch. 7 additional possibilities of trans-

A more accurate graph, for O<I4/.i,. , is shown (in normal-

ized form) in Fig. 7.2.9, curve C.
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fer function formation result from the use of feedback.

Fig. 8.1.6. L-fold subtraction system.

Let us consider the simplest system of this type (Fig.

8.1.7). As is easy to see:

where 6 - feedback coefficient.

a. v

Fig. 8.1.7. System with feedback (integrator).

The transfer function of the system shown in Fig. 8.1.7 there-

fore has the form (see 8.1.1):

I

I-- e r" °(8.1.12)

and its modulus is defined by the formula:

1'1 - 29 cos-wT,-- (8.I.13)

Fig. 8.1.8 illustrates relationship (8.1.13). In order

for the system to be stable, condition G:<i. must be ful-

fil'ed. As is known, the system of the type described is used

as an approximation of the ideal summator (e.g., in systems

similar to that shown in Fig. 6.2.7); it is also frequently
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called an integrator ([8.4], Ch. 4; [o.5]). In this application

tne feedback coefficient approaches unity as the number of /144

pulses to be summed increases. In the system shown in Fig.

8.1.7 it is difficult to achieve stable operation for fl>o.9.

Often a somewhat modified system is applied (Fig. 8.1.7. b),

which is theoretically equivalent to the previous one, but - as

is easy to see, this allows a more stable operation for a close

to unity. It is possible to achieve fl 0.98 in such a system

[8.5]. Furthermore, cascade connection of integrators is possi-

ble, which has some advantages. Since the main topic in this

chapter concerns periodic filters used in systems of stationary

clutter reduction, integrators with feedback will not be con-

sidered in detail here. A more detailed discussion of their

properties may be found e.g., in refs. [8.6 - 8.8].

I >0

Fig. 8.1.8. Modulus of transfer function of the system shown
in the preceding Figure.

Let us consider now a single subtraction system with feed-

back (Fig. 8.1.9). It is easy to see that:

S.()+ AW = S(co) e , (8.1.14)

(see also Fig. 8.1.7 and eq. 8.1.11). In analogy to (8.1.4)

we can also write:

a b _

Fig. 8.1.9. Subtraction system with feedback.
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As follows from (8.1.1), (8.1.14) and (8.1.15),

d.- RF~p( ) r._ p(8.i. 16 )

Comparing (8.1.16),(1.5) and (8.1.12) we find that F,1 (w) = /145

F&( ).F((v), , i.e., the transfer function of a single subtraction

system with feedback is a product of the transfer function of

a single subtraction system and an integrator with feedback.

The modulus of the transfer function of the system in question

is determined by the formula:

2 sin

= -/- 2, o,+p2 ( 8.1. 17 )

Fig. 8.1.10 illustrates relation 8.1.171.

1 0 0;0

Fig. 8.1.10. Modulus of transfer function of a single subtrac-

tion system with feedback.

Using similar methods it may be possible to determine the

transfer function of a double subtracting system with feedback

(see Fig. 7.2.7. d) of even more complicated systems. By using

elementary methods in considering these problems the solutions

become more difficult and less clear as the systems get more

complex. Therefore certain theoretical methods have been devel-

oped which considerably facilitate the analysis and allow a

1A more accurate graph for o <fi,<o.; is shown (in normalized

form) in Fig. 7.2.8.
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practical synthesis of periodic filters systems. These problems

will be discussed below.

8.2. The transformant and its application in the analysis of

periodic filters.

In considering the problems related to periodic filters

whi.h contain delay lines, a useful method is the application

of the so-called transform z.

As we know, the transfer function of a linear quadrupole /146

refers to the voltage at the output of this quadrupole, gener-

ated by the application at the input of the voltage in the form

of an individual pulse (Dirac function) 6(t) [8.1]. The trans-

ition function h(t) and the transfer function F(w) (see eq. 8.1.1)

are related by the known relationships [8.1]:

(8.2.1A)

2 -r (8.2.1B)

As follows from (8.2.1B), the periodic transfer function

corresponds to the transition function in the form of a sum of

individual pulses, occurring at constant time intervals [8.9]:

h(t) -(8.2.2)

and Tp = p . where w is the period of the transition function.p ,

It is easy to see on the basis of Fig. 8.1.1 that the

pulse response of a single subtracting system has the form:

h(t =f J1t) - T ); (8.2.3)
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for a double system we will have:

h,(1) = d(t) - 26(t - T,) - 5( - 2T,)

(8.2.4)

etc.

Ch. 7 indicates that if only the filtration between

pulses is considered, the shape of the pulse is not important,

and the input voltage may also be represented in the form of

individual pulses. In considering signals of this type it is

convenient to use the Laplace transforms. As we know ([3.i],
[3.1.0]),

(8.2.5)

and

'L?,(t - TA =r-2{,,i .9-,'

(8.2.6)

Since the transition function h (t) and the operator transfer

function F(p) are related by relations analogous to (8.2.1):

F(p) -1( Ih(t)}, (8.2.7A)

h(L) = 2-1 {F@p), (8.2.7B)

it is evident that both the operator transfer function F(p) and

the Laplace transform of the signal in question may be represen- /!aT

ted in the form of a sum ctf terms of the type e-npTp.

Transform z consists in applying the substitution

= (8.2.8)
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Therefore, the operator transfer function of a periodic

filter F(z) has the form:

(:) \f" -"; (8.2.9)

and similarly, the transform z of the input signal consisting

of a series of individual pulses is

-(8.2.10)

The Laplace transform of the output signal is defined by the

formula:

U!,,(P(P), (8.2. 11)

and thus we can write:

U,( ) (8.2.12)

Transform z of the output signal may also be represented in the

form of the sum:

,,(:) - - (8.2.13)

The coefficients Wn can be obtained by substituting (8.2.9) and

(8.2.10) into (8.2.12) and by carrying out appropriate alge-

braic calculations, or by taking advantage of the relation:

(8.2.14)

and keeping in mind that the integration envelope encompasses
all zeros and poles of function Uw (z) [8.11-8.13]. Table 8.1
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gives the z transforms of some signals.

The transform z transforms (cf. eq. 8.2.8) the left half-

plane of the variable p=a + jw into the area contained within a

circle with unit radius (see Fig. 8.2.1). More precisely, this

transformation is not unambiguous, namely the inside of the

circle corresponds to each strip of the left half-plane p, for

which n-<,<:11-- ) - , where n = 0, +1, + 2 ... (Fig. 3.2 2.

The axis a = 0 is transformed into the circumference of a unit

circle on the plane z=x+jy.

Table I

Lp.I IC') ' Obwl, nia pt) Q (1(,) IZ jfw)

.I _

S1>0

1-0 TV I oI F -

V (t -- T,) I, g> 0

1~-ps-co -o

ft>

A -0 >T0

1 --envelope

W.0

Fig. 8.2.1. Transform z=e pT
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Fig. 8.2.2. Properties of the z transform.

These properties of the z transform can be interpreted /!49

to mean that the application of this transform allows to con-

sider only the variability within the period in the case of

periodic transfer functions (or signals); whereas the period-

icity is taken into account by the form of the transform itself.

This facilitates algebraic operations and discussion of some

properties of the systems as will be shown.

In general, the transfer function F(z) will have the form

of a rational fraction

F(z) =
b,. z'a- b,,, z-1 . -+ (8.2.15)

which may also be written in the form:

(8.2.16)

which shows the zeros and poles of the function F(z). Both

the zeros and poles must be real quantities, or complex. The

condition of system stability is to have the poles of F z)

situated within the unit circle; the position of zeros is not

restricted.

185



To illustrate the kind of relationship between F.z)

and F(w) let us note that in (8.2.16) both the numerator and

the denominator contain the product of com lex vectors, which

are the distances of a point (correspondin, to a given value w)

along the circumference of a unit circle fr-om the appropriate

zero or pole of function F(z). Therefore:

prod, or of all distances from given point
at the circumference of unit circle to zeros

F(w) = of function F(z) .,.2.17)
product of all distances from given point

at the circumference of unit circle to poles
of function F(z)

The above relationship is illustrated in Fig. 8.2.3.

Let us note that the peculiar point at the system origin does

not influence the modulus of the transfer function because the

corresponding distance is always equal to unity [8.14].

As an example, let us consider the single subtracting

system (cf. Fig. 8.1.1). On the basis of (8.1.5) we have:

- = - (8.2.13 ,

The transfer function F (z) has a pole at the system origin and

a zero at z=1 (Fig. 8.2.4). in Fig. 8.2.4 the distance from a

point at the circle circumference to the point z-1 is:

r - 2 sin -.

so that we obtain for FI(w)l an expression identical to (3.1.6'.

The values of F(z), F(w) and sketches of the position of

the poles and zeros for several systems of periodic filters are

given in Table 8.7j. Using Tables 8.1 and 3.:1 and (8.2.12)
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it is possible, if needed, to determine the siznals at the out-

put of periodic filters(3.14] A.-pendix )

- '-

/ ' 4A

Fig. 8.2.3. Illus ration of Fig. 8.2.>4 Graph of the oro-

the relationship (3.2.17) perties of a single subtracting
system in plane z.

3.3. Synthesis of periodic filters.

By the synthesis of ceriodic filters ",;e mean the ,es'cn

of the electric system and the values of its component elemen-s

on the basis of filter characteristics

In the case when the operatcrt-ransition Cfnction F>'

tne filter is given (see previcus charter, it i ss-cbl to

consider the question of synthesis usin - various :,,etncdz. 72r

one simpler cases it is sufficient to slmcv compare-tne oie:

transfer function with the known (cf. :ole . functions

F(z) or to recognize the system stru.t.re by simple al:....

transformations. As an example let us consider the synrthsis

of a filter realizincg the transfer function

F(:) -- 17 - )
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Transforming (8.3.1) we will obtain:

1

, - (z, + 0)/IZ- ,fr. (8.3.2)

Because of (8.2.12) we will have:

U,(z) = UW(Z) P - (h + ;.)IZ + Z'ZJZ3]. (8.3.3)

The realization of (8.3.3) will be assured by a system of sum-
mator whose input will be appropriately the signals representing

individual components of the equation (Fig. 8.3.1). Further, /151

it is easy to recognize that these components may be generated

by an appropriate joining of delaying lines (whose operator
transfer function is equal, as shown in the preceding chapter,

to 1/z). As a result, we will obtain a system represented in
Fig. 8.3.2 C8.13]. By placing the output of the system at point

A, it is possible to realize with its help the transfer function

i 

U.as well

Fig. 8.3.1. Geometric interpre- Fig. 8.3.2. System realizing
tation of (8.3.1). the transfer function given

by (8.3.1)

(Z - --J 4 - Z2) Z h ) :-), ( 8 . 3 . 4 )

and placing the output at point B- the function

0, - : - ",) (8.3.5)
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The transfer functions, defined by more complicated

expressions, may be represented in the general form as a proper

fraction (see (8.2.15):

an , * + a - 1  + . a o

b. : + - ... + * (8.3.6)

Every expression of this type may be generally realized

in a canonical system represented-in Fig. 8.3.3 [8.12, 8.15]

Since in the cases considered here the coefficients a and b

are real, the roots of both numerator and denominator are either

real or complex. It follows that the numerator and denominator

of expression (8.3.6) can be represented in the form of the ratio

of factors appearing at most in the second power. This is an

important property because it means in terms of the system that

any transfer function of the type (8.3.6) with real coefficents

can be realized by connecting systems serially, with each system

having at most two delay lines; also, the feedback loops encom-

pass no more than two delay lines [8.12, 8.15] . /152

' c

4,

Fig. 8.3.3. Canonit'al system system of a periodic filter.

Therefore we should consider the properties of the "basic

blocks" containing one or two delay lines. The canonical form

of a system containing one delay line is shown in Fig. 8.3.4,

and one with two lines is shown in Fig. 8.3.5. The transfer

function of both systems is given in Table 8.II.

Various system configurations are possible, as mentioned

previously, which have the same transfer function. Linden and

Steinberg [8.15) have applied the theory of flow graphs to the

configuration problem of periodic filters. We will not present
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Fig. 8.3.4. Canonical form of Fig. 8.3.5. Canonical form of
a system with one delay line. a system with two delay lines.

a

Fig. 8.3.6 System identities resulting from the theory of
flow graphs.

this theory in detail here, because in the cases of interest it

is sufficient to utilize only two simple identities resulting

from it. These are represented in Fig. 8.3.6. A reader more

interested in this problem may find more detailed information

in the literature [8.16-8.19]. Fig. 8.3.7. shows equivalent

configurations of a single subtracting system with feedback, /154

resulting from the identities mentioned above [8.15).

.0 Up to now our considerations indicate that the number of

delay lines in a system which synthesizes a given characteristic

is equal to the number of poles not situated at the system ori-

gin, or to the number of zeros - depending on which number is

greater. Any transfer function have n poles I or n zeros may be

lObviously, obeying the stability condition Izp1l (cf. Ch. 8.2).
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Table II /153
1-filter system; 2-position of zeros and poles.

,U/dod r/tn~ F a)l 1 P.I t.'.' P.

_______-_I £ t/;A x ~

T I

LCiFo i -- 13_.

'i I I

3i .

_ -- z-, , i ' ," r-'

+ -(

1~ V
I_.._ ___ _

Fig. 8.3.7. Equivalent configurations of a single subtracting

system with feedback.
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realized in a system containing n delay lines [8.15].

In the case when there is no given direct transfer func-
tion F(z) and a synthesis is desired of a system which approxi-

mates a defined function F(w), we use the transform p* [8.12].

The results of the synthesis of filters with upper- or lower

passband in order to obtain the given transfer functions of

periodic filters.

The transform p* transforms the circumference of a circle

of unit radius in plane z onto the imaginary axis in plane p*.

In other words, the consecutive use of transforms z and p*

transforms a strip of the plane p (cf. Fig. 8.2.2) into a half

of plane p*. In this way the determination (by defining the

zeros and poles) of the characteristic of a filter with upper-

or lower passband in plane p* leads to the determination of the

appropriate characteristic of a periodic filter; this problem

will be explained below.

The transform p* is defined by the equations:

-D+p. (8.3.7 A)

z-1

z+l1 (8.3.7 B)

The transform p* may be used directly in the synthesis /155

of periodic filters which reduce stationary clutter if we are

using the characteristics of filters with upper passband, or

in the synthesis of systems of protection integrators using

the characteristics of filters with lower passband.
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However, if we want to synthesize a periodic filter for

reducing stationary clutter by using the characteristics of

filters with lower passivity, or in the synthesis of systems of

protection integrators using the characteristics of filters

with upper passbank* we should apply the transform p*, similar

to transform p*, and defined by equations:

q + (8.3.8 A)

z-I-I (8.3.8 B)

In both cases n is a coefficient which allows to guage

the transformation appropriately, thus allowing to obtain an

appropriate width of the passbank and reduction bands of the

filter [8.12].

Equations (8.3.7) and (8.3.8) are similar to the expres-

sions defining the impedance as a function of reflection coeffi-

cient1 . Therefore, in considering the synthesis of systems

using the method described graphic methods are also used, taking

advantage of the Smith graph known in microwave technology [8.20].

The application of transform p* will be best illustrated by

the example of the synthesis of a triple subtracting system

with feedback, given below [8.12].

Example of the synthesis of a periodic filter.

lIf the complex reflection coefficient is denoted by j and the
impedance by Zk, then: Z& -Z.

kA + ZA
where Z - characteristic impedance [8.20], Ch. 9. Substituting q*
for Zk  and 0 for Z we obtain (8.3.8A) and by substituting p*
for Z and z for , we obtain (8.3.7A).
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In order to reduce stationary clutter we need a filter

which has a maximum effective reduction at points - 0,

2w,... where CU-. ) , and a possible flat course of the
transfer function in the band ,.< -6- (smaller than 1 dB).

In other words, the value F(z) should be almost constant
(smaller than 1 db) for the values of z on that part of the cir-

cumference of a unit circle zeje, where 0 /156

In the vicinity of point z-l, F(z) should assume a minimal value.

Let us assume that we will accept as the model nonperiodic
filter a filter with lower passband. Using the method described

we can use the data of Butterworth, Bessel, Chebyshev and

others C8.11. In the present example we will assume a transfer

function of the Chebyshev type.

Based on relationships (8.3.8 B) the requirements for
F(z) correspond to the condition of obtaining a transfer func-

tion with a variation smaller than 1 dB in the passband

Dag - < w < Dc -; (8. 39)

at the same time, the transfer function should assume minimal

values for w* = C.

By choosing appropriately n, it is possible to consider

the model filter with the condition

(8.3.10)

Ilnequality (8.3.?) follows directly from (8.3.8 B) on the basis
of relationship
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It is easy to see that in order to accomplish this we have to

take = tg-.

The solution of the problem of the synthesis of a filter

with lower passband and with the above transfer function is dis-

cussed in detail e.g., in refs. [8.21, 8.22]. The position of

the poles is calculated from the formula:

q, = sinh 7 coS e l: + j osh -, in 0 , (8.3.11)

where

x N+I -2k
eft 2 k= 1, 2, 3 .... V

N - number of poles

(-A !F(w) i.e., the variation of the transfer
function in the passband.

For the case in question, i.e., for N=3 and the varia-

tion 1 dB, we obtain from the tables contained in refs [8.21,

8.22:]

- - 0,2471 -+ij 0,009 , q;* = - 0,4042,

q=-0,2471 -jo,965o. (8.3.12)

The position of these poles in plane q* is shown in Fig. 8.3.8. /157

The transfer function of a model filter with lower passband,

obtained as the result of this synthesis, is shown in Fig.

8.3.9.

Going from the model filter (with lower passband) to the

periodic filter using the method described above, we utilize

(8.3.8 a). For 8o=450 we obtain:
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, l I I
e / 4 2

-, ,j44 Z

4=.e

Fig. 8.3.8. Position of poles Fig. 8.3.9. Transfer function
of the synthesized transfer of a filter with lower passband
function for a filter with lower which is the model for the
passband in plane q. synthesis of a periodic filter.

, 0 03.o18, :3 = OS374e-. a (8.3.13)

These values may also be determined graphically using the Smith

graph. In order to do this we must first calculate the norma-

lized values -q*, i.e. ti.-k .

t* I;

-j-O,0-j2,33-- "" -- 1,104, - - ,,7+,j 2,332. (..4

These values should be placed on the Smith graph; the

modulus and the argument zk may then be found graphically, as

shown in Fig. 8.3.101.

Finally, the transfer function F(z) of the filter being

synthesized may be written in the form:

1A detailed discussion of this problem is contained in ref.[8.23j.
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pA

Fig. 8.3.10. Position of singular points of the transfer
function on a circular graph.
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F3(z) = W

4" - ZI) (Z - '-,) 4 --3)
( - )3 (8 .3 .15 )

(z - 0,0881) (z2 - 1,2001z + 0,7012)

The filter is composed of two sections: the first is /159

a single subtracting system with feedback (=0.0881), while

the second is a double subtracting system with feedbacks

(Fig. 8.3.11). The transfer function of this filter is shown

in Fig. 8.3.12.
I4

-131

Fig. 8.3.11. Realization of the synthesized periodic filter.

The second section of the filter, shown in Fig. 8.3.11

in the canonical form, may also be realized in another config- /159
uration (cf. Table 8.11), possessing some practical advantages

(cf. CH 8.1).

Fig. 8.3.12. Transfer function of a periodic filter, based
on the characteristic shown in Fig. 8.3.9.

The appropriate system is shown in Fig. 8.3.13. On the basis

of (8.3.15) and Table 8.II, for the case in question, we find

a1=0.4909, a2= 0.(012.
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I

w _

Fig. 8.3.13. A variation of the configuration of the second
section of the filter shown in Fig. 8.3.11.

To illustrate the dependence of the shape of transfer

function on the value taken for 0o, Fig. 8.3.14 shows (taken
1from ref. 8.23) F(f) for three values of 8.

In some cases it is useful to make the assumption that /160

the zeros of the transfer function lie on the circumference of

a unit circle at some relatively small distance from the point

z=l.

0

, 9°J

- 'p

'p

Fig. 8.3.14. Dependence of the shape of transfer function on
the assumed value of e0.

1Similar to this case, the transfer functions shown in Fig. 8.3.
14 were synthesized for N=3 and Chebyshev's characteristics, but
with the inequality in the lower passband assumed to be 0.5 dB
rather than 1 dB.
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The system realizing a double subtracting system with the zeros

"spread out" is shown in Fig. 8.3.15 [8.12]. Such a system can

be regulated more easily than a corresponding canonical system.

The reason is that each of the subtracting systems can be regu-

lated (when we set 8o=0) for minimum output signal; the regula-

tion of the value of 8o then determines the separation of the

zeros. The transfer function of such a system has the form

[8.12, 8.23].

j(z) z2 ,- (2 - )z+ " 4-+6
F2 Z , (9.+ A +( - - 6

Fig. 8.3.15. A double subtracting system with feedback, having
"spread-out" zeros.
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9. EVALUATION OF THE DETECTAILITY OF SIGNALS AGAINST /162

AN LNTRF=CE BACKGROUND.

For practical applications it is important not only to

determine the structure of the optimal receiver systems, but

also to evaluate the quality of the decisions made with the use

of optimal and suboptimal systems. This problem, which may also

be called the problem of evaluation of the signal detectability

against the background of interference, will be briefly discus-

sed in the present chapter.

9.1. Calculation of the quality of optimal decisions in the

binomial case.

As had been shown in Ch. 4.2., the optimal binary decision

rule has the form:

x,, joieli P(X --- X21,) 4P(X = xy)

x,, je eli e(X = X2.) >A
P(X =z iy)

(cf. eqs. 4.2.12-4.2.14).

In order to determine the quality of the decisions made

on the basis of this rule, we have to calculate, according to

the definition (Ch. 4.2 and [9.1 Ch. I), the average risk:

I - E L(x. x(Y)l
.r ,(9.1.2)

taking the decision rule given by (9.1.1) for x*(.). As in

the derivation of the optimal rule, it is convenient to calcu-

late the average encompassing the information and signals trans-
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mitted as the average of the conditional average. We can write:

i=E w -(Yoj = E{EL[:x,=(Y)+}
xx X, Y ,, (9.1.3)

where E denotes the averaging operation encompassing the set
yri

Y of signals received for the information x. We will define /163

the conditional risk:

/[x*(.) x ] =E L (x, x*(Y)],I.. (9.1.4)

for a defined transmitted signal. Let us assume that information

X=x1 is transmitted. The conditional risk is:

S[x( ) I xj = L (x, x,) 1 x*(Y) = x, X = x] -

+ L(x,,x:) P .x(Y) =xa.IX x=. (9.. 5)

where p~x*(y)=x.Xxj denotes the conditional probability of

decision x*(Y) =x - with the condition that information X=x 1 is

transmitted.

When the loss is defined, the conditional risk depends

only on the probabilities in (9.1.5). They have the meaning

of decision error probabilities. Let us denote:

a1 = P(x,(Y) = x,X = x,], (9.1.6)
ni P[X(Y) = x, i = x,].

Obviously,
P[x*(Y) = -r' I X ,] = I -
P[x"(Y) = x...'X = x.] = I - a,:'.

(9.1.7)
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The calculation of conditional risk '.s reduced to the

calculation of the probabilities of errors a 2/1 and a l/2*

In the detection problems considered here, the information

x 1 corresponds to a lack of signal, and information x 2 - to its
presence. It is accepted in radar to define the quality of deci-
sion by giving the probability of signal detection

joI'- 91

for a defined probability of a false alarm

r - j'.(9.1.9)

and for a defined signal-to-noise ratio at the input of the
receiving system. Let us note that we are then treating the

information (and therefore the transmitted signal) as being
1defined, and the signal received as being random I

As an example we will give the relations for the case of

optimal detection of coherent signals with unknown phase and

unknown phase and amplitude, on the background of white noise /16~4
(9.1, 9.3 2). In both cases the signal frequency is known; thus
detection takes place in the system shown in Fig. 6.2.1 or an
equivalent one. As a consequence of (6.2.8-6.2.10), the proba-

bility distribution of the normalized variable (i.e., the path

at the input of the decision system in Fig. 6.2.1), i.e.,

1 We should remind the reader that optimization of reception in
the sense of the Neymann-Pearson criterion, i.e., maximization of
D at defined value of F, leads to an identical receiver structure
as that defined by the criterion of averaged risk. The value of a
decision threshold is determined here by the given probability of
false alarm [9-2J.
2 Assumpt ions concerning the signal probability distributions are
identical to those in Ch.6; see (6.2.4) and (6.2.13, 6.2.1).
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!

q,(Y) 01y
(9.1.10)

(cf. eq. 6.2.8), has the form of the Rice distribution:

pPv.Z1) - i' exp [ - POD(9.1.11)

where the signal-to-noise ratio is

I' (9.1.12)

and Eo - signal energy, W - spectral noise density [9.1].

In the case of no signal, distribution (9.1.11) becomes

the Rayleigh distribution:

P(11'x X0 - ' exp 2 '
p('~ i~ = i Cp -T Jaj.(9.1.13)

On the basis of these relations, the probability of false alarm

F in the case of a signal with unknown phase is:

- (I" z,) dil e- a'.((9.1.14)

where n - normalized detection threshold (9.1, Ch.III; 9.3,

§33). On the other hand, the probability of signal detection

is defined by the formula:

/['1
D - ('l) d ' - ,- e p W , q + 1108 1('p.I d '; ( - -5

S, -25 (9.1.15)

205I



the methods for calculating this integral are discussed e.g.,

in §33 of ref.[9.3] and in ref.[9.4]. Fig. 9.1.1 shows Dpe)

(dashed line) for various values of F, calculated according to

relation (9.1.15) [9.5].

In the case when amplitude fluctuations are also present, /165

the relation between D, F and 5 assumes the following well-
known and simple form [9.2] (§34):

D F(9.1.16)

where

"w0 (9.1.17)

and

k=Ef . t I

(9.1.18)

is the average signal energy ([9.1], Ch. III). Relationship

(9.1.16) is shown in Fig. 9.1.1 (solid line).

In the case when the signal is composed of a coherent

pulse packet, the above equations may also be applied, because
we have not made any restrictions as to the shape of the envel-
ope A(t). Since the energy of a pulse series is equal to the

sum of the energy of individual pulses

6=E . (9.1.19)

it is easy to determine the values E or E, which should be sub-
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stituted into (9.1.12 or 9.1.17). If we assume that the packet

is "rectangular", i.e., contains N pulses with the same signal-

to-noise ratio pl, then we can write: 
/166

P. = P. N,

= , V . (9.1.20)

These relations are characteristic of coherent detection.

WI , /i /

,iI,+.__S_____

lI /

! /' . " 0 , 1

Fig. 9.1.1. Characteristic of detection of signals with unknown
phase (dashed lines) and with unknown phase and amplitude (solid
lines) [9.3].

The determination of the decision quality for a multi-

channel system (i.e., with signals of unknown frequency) and

for systems designed for detection of noncoherent signals are

against a background of strongly correlated interference are

much more complicated problems. These will be discussed below.

9.2. Evaluation of the detectability in a multichannel system.

As shown in Ch. 6, the optimal receiver realizing the

reception of coherent signals with unknown frequency is a multi-

207



channel system shown in Fig. 6.2.41. For this system, as

follows from Ch. 4.2 and 6.2, the probability ratio (for inter-

ference with uniform spectral density W ) is:

P(zI Y) I I'(z,) (
.~~\ eex 2 ~ 11,W) 921P(Z'IY) "/ P(z,) e I '.p -xp- . (9.2.1)

where M - number of channels, and

p' f a(t, f.) ,. (It.fa,,(9.2.2)

Let us define

Ad(Y) - '.x!,j 
-

0- 0 (9.2.3)

This is the only factor-dependent on the signal received, in

(9.2.1). The otpimal binary decision rule is thus equivalent

to the rule:

XOWy - iX" if .1 '.1,,
if ,1>A

(9.2.4)

where Ap - threshold of detection (cf. [9.1], p. 142).

In order to calculate the error probability of the rule

(9.2.4), we have to calculate the probability density of the

random variable A(Y1 ) where Y1 is a process representing the

signals received with the assumption that information x-x 1  /167

had been transmitted. This variable is the sum of random

variables exp O,,y),]. They are the so-called logarithmically-

iRealization of an equivalent system by other methods is des-

cribed in Ch. 10.3.
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normal variables ([9.6], 917.5). Because of' their special

character, an accurate calculation of' the probabilities of'

errors meets with considerable difficulties £9.1].

Let us consider certain optimal decision rules, simpler

than the rule (9.2.4), namely:

-)X1, Jf £,d)- p n=12 A

X if /bT:a>U; m=, ! (9.2.5)

Rule (9.2.5) means that if the decision threshold has not been

exceeded in any of the individual channels, a decision for no

target is made. However, if the decision threshold is exceeded,

in at least one of' M channels, a decision f'or presence of' the

target is made.

The calculation of' the errors probability of rule (9.2.5)
consists in calculating the joint probability of' events

/'.(l)> ,7 ) -=1, 2 .. , (9.2.6)

with the condition that the signal transmitted is def'ined as

If we assume the orthogonality of signals (which is the

case here), then the variables iPm(Y) become independent and the

calculation of' probabilities is considerably simplified.

Let us assume that the probabilities of a false alarm and

of' correct detection are identical for each channel (taken

individually):
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In the case when we assume the detection of a single

object, the signal may appear only in one of the channels.

The probability of a false alarm for the entire system realizing

rule (9.2.5) may be written in the form:

F. -(I - F)". (9.2.8)

Analogously, the probability of detection will be:

D1l-rI -(I - ))( I - F - (9.2.9)

For sufficiently small F we can set

F3, 3IF (9.2.8 A)

and
(9.2.9 B)

As indicated by the above formulas, the probability of detection

in a multichannel system (i.e., with unknown frequency) is

approximately identical to that in a single-channel system (i.e.,
with known frequency), in which an M-fold increase of the pro- /168

bability of a false alarm has been allowed. This can also be

interpreted as meaning that to assure certain probability of

detection in a multichannel system when the probability of a

false alarm is given, it is necessary to determine in each of

the individual channels an M-fold lower probability of a false

alarm than in the entire system. This relation is discussed

and utilized in many publications [9.3, § 57; 9.7, § 3.4]J.

Let us use these relationships to determine the minimal

signal detected in the case of a multichannel system, designed

for reception of coherent signals with unknown phase, amplitude,
and frequency. As indicated by the preceding chapters, and in
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particular by Ch. 9.1, for each individual channel we have the

following relationship fulfilled in this case:

I
D' (9.2.10)

where V--the signal-to-noise ratio for an individual channel (see

(9.1.16)).

Thus it follows from (9.2.8 A, 9.2.9 and 9.2.10) that:

I
In- + In M

In-
D.1, (9.2.11 N)

this equation can be written in the form:

In 21

I

D,,1 (9.2.12)

where - the signal-to-noise ratio be necessary to assure identi-

cal probability of a false alarm in a single-channel system as in

the M-channel system considered here.

In the case of a signal with unknown phase and frequency

the relationships are somewhat more complicated and these deriva-

tions will not be presented. For DM=0. 5 , however, a similar for-

mula is obtained

ps - pi, . 2 Inif (9.3.12)

(see [9.3], §57).
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As seen from the formulas above, the increase of the sig-

nal power, necessary for M-channel detection of the same quality

as in single-channel detection, depends approximately on the

logarithm of the number of channels M.

A completely accurate comparison of an optimal system /169
operating according to rule (9.2.4) with a suboptimal system

operating according to rule (9.2.5) is extremely difficult for

reasons described above. However, for large signal-to-noise ratios

[9.1], and for small F, these systems can be considered practically

equivalent in most cases [9.3, §57, 9.8, 9.9]. The problems re-

lated to the questions discussed here are also described in refs.

[9.7, 9.10-9.16].

The relationships described above demonstrate the character

of the detection process using a multichannel receiver. For a more

accurate evaluation of a specific system it is necessary to carry

out a more detailed analysis. We have to consider here such prob-

lems as the choice of the shape of the transfer function of indivi-

dual filters ,their number, positioning, etc. The appropriate
considerations require very tedious calculations. Because of space

limitations we will not discuss these detailed questions, and will

limit ourselves to a summary of certain conclusions.

If the time duration of a signal is denoted by T, and the

range of unknown frequencies by B, then the number of the narrow-

band filters M should be: M-(2-3)BT [9.9, 9.17]. Reference [9.17]
contains numerous graphs of detection probability of a signal in

a multichannel system with coherent integration as a function of

F, P and M. However, the effect of inter-channel correlation was

omitte r'9 latter problem is discussed in refs. [9.9, 9.15 and

1 The optimal shape of transfer function of an individual filter is
defined by (7.3.2), but in practice matched filters are usually not
used because of practical difficulties, and simple narrow-band
filters are used.
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9.18]. The last reference also contains many graphs for practical

applications. The effect of the positioning of the filter bands

(disposition) is discussed in refs. [9.7,], p.234 and (9.9; 9.17.]

Fig. 9.2.1. shows the detection characteristics for the

case BT=60, with F-l10. The curves correspond to: A-multiohannel

receiver with optimal number of channels with rectangular transfer

functions; B - a similar case, filters in the form of resonant

circuits; C - wide-band receiver with non-coherent integration
[9.9]. It is evident that the multichannel receiver Eives a dis-

tinct improvement relative to the wide-band receiver for both types

of characteristics.

In some cases, in individual receiving channels, sub-

optimal systems are used which consist of a pre-detection filter,
detector and a non-coherent integrator. The detection character-

istics for radar devices of this type are presented in the form of

five graphs (for F1 - 108 ) in the paper of Bussgang et al.
[9.19].

The above considerations referred to the detection of sig-

nals against the background of white noise. The practical solution

of analogous problems for detection against the background of

strongly correlated passive interference has not been published /170
to date. Therefore we will discuss some possibilities of utilizing

the results obtained for white noise for an approximate evaluation

of detectability against the background of passive interference.

When correlated interference has a narrow fluctuation band

with a Gaussian shape, the envelope of the maxima of the absolute

values of the transfer function for narrow-band filters in a multi-

channel system has a flat apex within a rather large frequency

range [cf. eq. 7.3.7 and Figs. 7.2.2 and 7.3.2). In contrast,

within the reduction band, the envelope of the transfer function has
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a value near zero, whereas between the base and the apex the trans-

ition is very steep (cf. also Fig. 9.4.3).

0

4f

all

0?

Fig. 9.2.1. Characteristics of detection: A-of a multichannel
receiver with an optimal number of channels with rectangular trans-
fer functions; B-as above, filters in the form of resonant circuits;
C-of a wide-band receiver with non-coherent integration [9.9].

As follows from this, in this instance the multichannel system may

consist of identical channels positioned only within the pass

band; whereas the reduction band simply lacks the appropriate
1

channels

The system created in this way may be considered similarly

to the previous one, i.e., assuming that within the passband range

we are dealing with multichannel detection against the background

of white noise. We should, however,in determining the averaged

detection characteristic take into account the lowering of the over-

all detection probability which follows from the fact that in the

reduction band, the signal is not detected at all. With the assump-

tion that the probability distribution of occurrence of a given

frequency within the range of possible Doppler frequencies is uni-

form, the detection probability would thus decrease according to

1The problem of the decreased influence of the "blind velocities"
ranges, generated in this way, is discussed in Ch. 10.
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the ratio of the width of transfer band (covered by the multi-

channel filter system) to the width or the band of possible Doppler /171

frequencies.

In the case when the envelope of the transfer function can-

not be approximated by a rectangular function (cf. e.g.'Fig. 7.2.

10), the problem becomes very complicated. When the band widths

of individual channels are small, it is possible to ignore the

variability of the spectral density of interference within the

channel's transfer function ([9.2], p.286), which corresponds to

approximating the envelope of the transfer function by a step func-

tion. Then one could calculate D and F for each channel. In an

approximate way, one can match the numerical result with the assump-

tions, by the method of trial and error. It is easy to see, how-

ever, that such a procedure would be extremely tedious and not very

accurate. It seems that both because of the calculation difficult-

ies and the large number of parameters wrhich would have to be taken

into account, the question of signal detectability against a back-

ground of strongly correlated interference using multichannel

systems can be effectively considered only with the use of appro-

priate modeling systems or computers. Similar approaches are used

more and more commonly in detection problems [9.20-9.22].

9.3. Passage of signals and interference through optimal and

non-optimal filters.

In analyzing the systems for signal detection against the

background of correlated interference, the concept of the reduc-

tion effectiveness of the filter is often used. This effective-

ness is defined as the ratio of the average power of correlated

interference at the filter input to the average power of the re-

mains of this interference at the output [9.23-9.25]. It is easy

to note that reduction effectiveness cannot be taken as the only
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criterion for evaluating the detection systems; e.g., by closing

the filter output we will easily obtain an infinitely large red-

uction of correlated interference, but we will certainly not

achieve any improvement of signal detectability. However, as will

become evident below, assuring an appropriate effectiveness of

reduction of correlated interference is one of the necessary con-

ditions for obtaining good decision quality (see Ch. 9.4). Ana-

lysis of the reduction of interference and of the signal also

allows us to better understand the operating mechanism of optimal

and non-optimal receiver systems. Therefore we will consider this

problem in swmewhat more detail here.

In accordance with the definition given above, the reduc-

tion effectiveness can be written as follows:

f I T,(f).F.'f), ((9.3.1 )

where

Wk (f) - spectral density of correlated interference; /172

F (f) - transfer function of the filter.

In the case when it is more convenient to use the auto-

correlation function rather than spectral densities, we can write

the equivalent relation:

R,(O)

o' (9.3.2)

where

R (T) - autocorrelation function of interference at the filter

input;
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Rw (T) - autocorrelation function of the remaining interference

at the output.

As before, we will start by considering the simplest sys-

tems. The reduction effectiveness of a single subtracting system

(Fig. 8.1.1) can be calculated by substituting (8,1.6) into (9.3.1),

or by determining Rw (T) and then using (9.3.2).

On the basis of Fig. 8.1.1 we can write:

R,.(O limr a f_ [,(0t - u,(& - Tp)] -u,(t + r) -z-.2T fr
-T

-,1.0t+ r- T ]dt, (9.3.3)

where ue (t) is the realization of a stationary stochastic process,

representing correlated interference.

After transformation we obtain:

R.(r) = MM)- I,(r + Tp) - R,(r - Tp). (9.3.4)

The reduction effectiveness of a single subtracting system can be

therefore written in the form:

R'(O) 0,.3

2 [R(0) - R(Tp)j I - p.(Tv) (9.3.5)

where pe (T) - normalized autocorrelation function of the inter-

ference.

We should note the interpretation of (9.3.5). Let us
draw the normalized autocorrelation function P(r)= R,(r)R,(0).
The quantity proportional to the remaining (i.e. not reduced)

interference can be read directly from the graph in Fig. 9.3.1.
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This gives a graphic picture of the dependence of the reduction on

the parameters considered.

Similarly, for a double system (cf. Fig. 8.1.3), we will

have [9.24]:

Boor) - 2 13R. r) - 2J?.(r + 7Tp) - 2B.(r - T,) +j

+--I R,( + ) + IR,(T - 2) (9.3.6)
2 2

and from this:

3 - 4p(,, 9 3 7

Various periodic filters have different values of the max-

ima of transfer function, which should be taken into account in

considering reduction. This can be done e.g. by calculating 9

for normalized transfer functions1 ; then we will be using the

notation C..

For the case of Gaussian shape of the fluctuation spectrum

(cf. eq. 5.3.4) we can specifically determine the reduction effect-

iveness depending on the type of interference. For instance, sub-

stituting (5.3.4) and (8.1.6) or (8.1.8) into (9.3.1), we obtain

for the single subtracting system2

I - O - (z i 'l
I '(9.3.8)

iThis corresponds to the assumption of the same system dynamics

following periodic filter.
21n substitutions to (9.3.1) the following relation was used
[9.26]: * d /-. _.

0 2 P
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while for the double system we will have [9.24]:S

3 - -L-.;,')

" " ( 9 3 9 )

Fig. 9.3.1. Geometrical interpretation of (9.3.5).

The graphs of relations (9.3.8) and (9.3.9) for a wide range of

parameters (for normalized transfer functions) are given in ref.

[9.24]. In order to simplify the discussion let us introduce

coefficient k, equal to the ratio of the spectrum width (at the /174

half-power level) A f to the repetition frequency fp (cf. Fig. D

6.1):

= J,T . (9.3.10)

This coefficient indicates the part of the period of the

periodic filter's transfer function which is "filled" by the

fluctuation spectrum of passive interference. It is easy to see

that the greater the coefficient k, the more difficult it becomes

to obtain significant reduction of correlated interference using

simple filters.

Substituting (9.3.10) in (9.3.8) or (9.3.9) we will

obtain for the case of interference with a Gaussian spectrum:
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2
= -exp(-3,50k,) (9.3.11)

;j.(dB) 3 + 10log[ - exp (-3,56k')J-',

(9. 3. 11A)

and

s (9.3.12)
3 - 4 exp (-3,5(I'1) .p(--+,, )

C1. DB) --- 9 + 0 log [3 - 4 exp (-3,560') -- exp 9-1,&k)- ( 9 3. 12A )

These relations are illustrated in Fig. 9.3.2. For most

practical applications the coefficient k lies in the range 0.01-

0.1.

For the case of interference with a spectrum of type

a/(a2 + W 2), i.e. with a correlation function P(r)=cxp(-ar), , it is

easy to calculate the reduction using (9.3.2). After transforma-

tions we obtain:

2
l-ep(-k, (9.3.13)

C1. (dB) 3 + lo log [I - exp(- ak)]-

(9. 3. 13A)

and

4._ 8s (9.3.13)3 - 4 exp rk) + exp 2- Ork) ''

Cvdd2B) -L 10 log [4 - 3exp (- fk) + exp(-.2k)]-: (9.3. 1 4A)
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A graph of these relationships is shown in Fig. 9.3.3;
for this type of interference the reduction effectiveness of both

systems is similar and smaller than for interference with a

Gaussian spectrum.

When the interference is strongly correlated, the auto- /175
correlation function decreases slowly and the exponential terms

in the above equations are smaller than unity. We can say then,

approximately, that the reduction effectiveness for interference

with Gaussian spectrum is inversely proportional to k 2 for the

single, and to k - for the double subtracting system (cf. Fig.

9.3.2). Similarly, for interference with an autocorrelation func-

tion of the type e~a the reduction effectiveness is approximately
inversely proportional to k for both single and double subtracting

systems 1 (cf. Fig. 9.3.3). These relationships give a graphic

comparison of the systems discussed in terms of reduction of

correlated interference.

Similar methods as the ones above may be used to deter-

mine reduction of L-fold subtracting systems.

In the case of more complicated systems (especially when

they contain feedback circuits), the z-transform may also be used

(cf. Ch. 8). The periodic spectrum of correlated interference

at the filter input can be represented [9.27] in the form:

= P.(qTp) ~ 9 .1

1 These conclusions may be reached by replacing the exponential
terms by the first terms of their expansion into a power series
in the reduction equations.
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406 I, I

.V-

,,a, V ~ ' V'

Fig. 9.3.2. Reduction effective- Fig. 9.3.3. Reduction effect-
ness of correlated interference iveness of correlated interfer-
in a single and double subtract- ence in a single and double
ing system (interference with subtracting system (interfer-
Gaussian spectrum). ence with exponential auto-

correlation function).

The interference spectrum at the filter output when the /176

filter has an operator transfer function F(z) can be therefore

determined from the formula:

lr..() - F(z) F(Ilz) I,(z). (9 .3.16

The autocorrelation function of interference at the out-

put of a periodic filter is obtained from the relationship (cf.

eq. 8.2.14).

R,{rT) - (z )F(I- z) JV,(z)z'-' dz. (9. 3.17)

As shown by Urkowitz (9.27), it follows from the above

equation that:

Rw(rT) -R.(O) 4- ~A. -~ .q)I 2At~
1-I (9.3.18)
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where hn has a meaning identical to that in (8.2.2); in the for-

mula above hi=O for i < 0.

The average power of interference at the output is

therefore:

J?~() = 2Vp(q~j'hl~~q~(9-3.19)

On the basis of the above equations we can determine the

reduction effectiveness of systems whose operator transfer func-

tion or the pulse response are given. For instance, for a single

subtracting system with feedback (Fig. 8.1.7) we have:

'= (9.3.20)

and 2

( J-- - I) '~' ~7)(..[l ''"-9. . "

We will now discuss the example of an optimal periodic

fizer, of the type described in Ch. 6.2, whose transfer function

modulus is defined by (7.2.6). As the transfer function is mat-

ched to the properties of interference (of. Fig. 7.2.2 and 7.2.10).

7 et us consider a typical case, when the interference spectrum

has a Gaussian shape, the average power of zorrelated interfer-

ence is greater by 4. dB than the average power of non-correlated

noise, and k=0.06. This corresponds to the ratio of the maxima. /177

srectral density of correlated interference to the spectral den-

sity of noncorrelated noise being equal to appr. 55 dB (see Appen-

iix 6). Fig. 9.3.4 represents the modulus of the normalized trans-

fer function of an optimal filter for this case1 .

1Because of th, symmetry, the figure shows only the graph in the
range of frequency from 0 to f p/2.
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Unfortunately, for the case in question it has not been

possible to find an exact general expression of reduction effect-

iveness. This reduction was calculated using approximate methods.

As indicated by the calculations, a filter having the

modulus of the transfer function shown in Fig. 9.3.4 reduces

correlated noise by about 64 dB. One should note that at. a given

ratio of the maximal spectral density of passive interference

fluctuation C to the spectral density of noncorrelated noise Wn,

the reduction by the optimal filter Cr .. is, within a wide

range, independent of the coefficient k because of the character-

istic flat course of the upper part of the filter transfer charact-

eristic (cf. Fig. 9.3.4).

2I

o at a2 0 .

Fig. 9.3.4. Transfer function of the optimal filter for k=O.06

For instanze, in the present case the reduction would te effect-

ively independent of k starting at very low values of k up to

Fig. 9.3.5 shows the function r' and the spectr' m of

correlated noise at the output of the optimal filter fcr the 7ara-

meters accepted above. At the output of an optimal filter the

greatest spectral density of correlated interference fals within
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the region of the maximal inflection of the filter's transfer

function F(f).

Next, we consider the possible reduction of the detected

signal during its passage through the periodic filters discussed

here. Since, as shown in Ch. 7, the power spectrum of the signal

has a shape similar to the power spectrum of a single pulse in

the cases considered here (cf. eq. 7.1.8), it may be assumed with

sufficient approximation to be constant within a single period of

the periodic filter characteristic. Therefore, the reduction of

such a signal in a periodic filter will be identical to the reduc-

tion of white noise. For a single and double subtracting system

it can be easily calculated, assuming that k--; . The value of

the exponential terms in the equations then approaches zero and

we obtain as a result for a single subtracting system a signal

reduction equal 3 dB, and for a double system - about 4.3 dB

For optimal filters, obviously, the signal reduction depends on

the value of the coefficient k, which determines the shape of the

optimal filter characteristic.

For the case C/Wo=55 dB (i.e., as in example described

above), the signal reduction as a function of coefficient k is

shown in Fig. 9.3.6.

a5 -

Fz 9.3.5. Iraph of function Fl*g. 9.3.6. Reduction of signal
2and the spectrum f (by an optimal filter with trans-

r ad fer function as in Fig. 9.3.4) as2orrelated noise at the output a f n t o f c e f c e t k
if a periodic filter.

o o. orse, for normalized characteristics.
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The optimal filter in question is characterized by a

considerable reduction of correlated interference and relatively

small signal loss. In the example cited the reduction of corre-

lated interference was more than twice the ratio or the power or

average correlated and noncorrelated interference. In terms or

the reduction of correlated interference, the optimal filter has

better properties than single or double subtracting systems at

relatively greater values of coefficient k. For instance, for /179

k=O.l the optimal filter reduces the interference with a Gaussian

spectrum by about 47 dB more e-ffectively than the single system

and by about 33 dB for the double subtracting system. Although

these systems show good reduction for very narrow-band interfer-

ence, they cause greater signal losses than the optimal filter 
1

within this range.

The optimal filter, in contrast with the simple subtracting

systems, has a characteristic which depends on the given interfer-

ence spectrum. It is easy to see the result of the interference

spectrum at the input of such a filter. It is significantly diff-

erent from the spectrum assumed. Let us denote the value of coeff-

icient kc assumed in defining the characteristics of the optimal

filter by k 0 . Such a filter will reduce more strongly the corre-

lated noise with a narrower band (i.e., with kk 0), but it will

not be optimal in this case because it will not utilize the possi-

bilities of decreasing signal losses. In contrast, when k>k0 , the

reduction of the filter (because of the specific shape of character-

istic - see Fig. 9.3.4) will decrease considerably. Since the sig-

nal losses change relatively little depending on the accepted value

of 1%, a highly negative effect on signal detectability is pro-

1simple physical interpretation is easy for the effect of strong
reduction of subtracting systems, if we deal with very narrow-band
interference. For interference with "infinitely narrow" spectrum
the path within each pulse repetition period would be effectively
the same, and thus their elimination would be achieved even by a
single subtracting system.
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duced by the appearance of correlated interference with a wider

band than the one assumed for the given optimal filter. In con-

trast, narrow-band noise is in this case less adverse.

In summary, the optimization of the transfer function of

a periodic filter becomes all the more necessary when the rela-

tive bandwidth of the fluctuation spectrum of correlated interfer-

ence increases. Thus such an optimization is especially impor-

tant in modern radar devices characterized by rapid scanning cf

space and operating with small numbers of reflections rom a single

object.

9.4. Evaluation of the detectability of noncoherent signals.

In order to evaluate the quality of decisions made by a

receiving system it is necessary to define the probability of

correct signal detection for a given probability of a false alarm

(see Ch. 9.1). It is well known that this requires the know-

ledge of appropriate distributions of probability densities at the

input of a threshold decision system.

For the case of a receiver of noncoherent signals the

problem of finding these distributions is rather difficult even /180

when only noncorrelated noise is present, because of nonlinear

transformation effected by the detector. For the case of a quad-

ratic detector (cf. Fig. 6.2.6), this problem is solved, but com-

plicated expressions are obtained (9.3, 9.29-9.31). Their appli-

cation in specific calculations is tedious. Swerling's work

[9.31] considers e.g., the problem of signal reception in the form

of a pulse packet, characterized by fluctuation between pulses,

with noncorrelated noise, quadratic detector characteristic and

application of post-detection summation 1
. For such signals, with

1For signals of the type considered, i.e., pulse series with low
filling coefficient, we may assume the operation of summation
approximately equivalent to integration.

227



with the distribution of fluctuation probability according to
Rayleigh's law, the dependence of the probability of correct

detection D as a function of the averaged signal-to-noise ratio

T is the following [9.31]:

where

I - incomplete function gamma [9.32];

N - number of pulses per packet;

A p - decision threshold.

Ref. [9.31] contains many graphs which allow easy determination
of D(F) for various N and p.

In the case of correlated noise the problem is incompar-

ably more complex, since we cannot use the assumption of statisti-
cal independence of noise for the consecutive pulses within the

packet received, which contains N pulses. One should find here
the appropriate multidimensional probability distributions for

signals and noise, at the output of optimal filters described
previously. Then, one should find the multidimensional probability

distributions after passage of the paths described through the
nonlinear element - the detector - and then take into account the
transformation carried out by the integrator, to finally obtain

the probability distributions for signal and noise at the input of

the decision system.

The problem of determining the probability distribution

for a stochastic process generated from the correlated Gaussian
process by detection (however, with a linear detector characteris-

tic) was considered by Hoffman [9.33], but the expression he

obtained is complex. The problem of the probability distribution

at the output of a system consisting of a serial connection of a
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linear filter, quadratic detector, and a second linear filter,

was considered by Mayer and Middleton and, from a somewhat dill- /131

erent point of view, by Emerson ([9.34, 9.35). T hese references

use complicated mathematical methods and achieve solutions for

simple filter characteristics. For periodic filters this problem

has not been solved to date, especially the shape of optimal fil-

ters. An exact solution of the problem of determining the decision

quality for the case in question must therefore be seen as a very

difficult numerical problem. A practical utilization of the solu-

tion, even if it were obtained, would require numerical calcula-

tions even more complicated than those contained in refs. [9.30,

9.31]. They would also be very extensive because of the consider-

ably greater number of variables involved in the problem of det-

ection in the presence of noncorrelated interference (the band-

width of correlated noise, shape of the autocorrelation function,

ratio of the power of correlated and noncorrelated noise, etc.).

This question could be approached using the methods of analog

modeling or computers [9.20, 9.36], which would require rather

extensive programs. No results of such investigations for the case

of correlated interference have been published so far.

In this situation it becomes particularly important to

find methods which allow to solve the problem in question in an
approximate manner, but simply. Tt seems that for the range of

questions considered in the present work there are possibilities
of an approximate evaluation of the decision quality for para-

meters encountered in practice using certain special properties

of the transfer function of optimal periodic filters.

In the case of correlated interference with a relatively

narrow band of Gaussian shape, its reduction by an optimal filter

is very strong. E.g., in the example considered in Ch. 9.3. The

difference between the power levels of correlated interference

and noncorrelated noise was 40 dB and the reduction of correlated

interference was about 64 dB. In contrast, the reduction of non-
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correlated noise by the same filter is rather small and in the

case considered was only about 1.4 dB. Evidently, the Interfer-

ences at the output of a periodic filter are derived almost

entirely from the noncorrelated input noise. However, it differs

from white noise because in the characteristic of the optimal

filter there exist bands of strong reduction in the regions of

multiple repetition frequency f . But these bands are relatively

narrow. Outside of these the characteristic of the optimal per-

iodic filter is completely flat (Fig. 9.3.4).

In summary, it seems Justified to consider the problem of

the decision quality in the system considered by an approximate

method, by determining the reduction of the noise and signal by an

optimal pre-detection filter, and then treating the quantities

obtained as the input to the "quadratic detector + linear summator"

system with the assumption that the noise at the input of the quad-

ratic detector already has an approximately noncorrelated charac- /182

ter. We can use in this case the solutions of the problem of the

decision quality in the "quadratic detector + linear summator"

system [9.31], and in particular (9.4.1).

Fig. 9.4.1 shows the probability of correct detection of

signal D as a function of the averaged ratio of the signal to

correlated interference T 2 with k = .f -n,06 (calculated with

the simplifying assumptions as above) and with correlated inter-

ference stronger by 40 dB from noncorrelated noise (the optimal

periodic filter has a characteristic shown in Fig. 9.3); the det-

ected signal contains ten pulses 2and the number of false alarms

is n-10 8 i.
iThe false alarm number is a way of determing the probability of
false alarm accepted in refs.[9.30,9.31], which is convenient in
some applications. n=Tfa, f Pv, where Tfa - time of false gating

alarm, fp - frequency of repetition, v - the number of spaces for

detection, falling within a single repetition period.

2) A correction of 1.6 dB has been introduced in the plot of graph
9.4.1, in order to make allowance for the nonrectangular shap of
the pulse packet [9.30; 9.37].
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Fig. 9.4.1. Probability of signal detection against the background
of correlated noise (with an optimal filter having a transfer func-
tion as in Fig. 9.3.4).

In evaluating the signal detectability in correlated noise,

the notion of the so-called visibility coefficient1 is used in prac-

tice; this coefficient will be denoted by WW.

The visibility coefficient is defined as the ratio of the

levels of passive interference and the echo signal (usually expres-

sed in dB), at which the signal is still detected 2  Thus, if one

detects a signal weaker by e.g. 25 dB than the passive interfer- /183

1English: Subclutter Visibility, SVC (cf. e.g. [9.25]).
2 This definition is used e.g., in refs. [9.25] and [9.39]. We
should note that there are also other ways of defining visibility.
E.g., in ref. [9.40] SCV is defined as the ratio of the passive
interference to the level of such a signal with optimal Doppler
frequency, at which the ratio of the power of signal to noise at
the output of a periodic filter is 2. ESCV (Expected SCV) is
similarly defined there, and averaged assuming uniform probability
distribution of Doppler frequencies. The visibility coefficient
may also be defined as the ratio of signal level detectable in the
presence of passive interference without using counter-noise sys-
tems to the signal level detectable in the presence of the same
interference with the use of such systems [9.41].

231



ence, then we say that the visibility coefficient for this example

equals 25 dB. The graph shown in Fig. 9.4.1 gives the values of
WW7 for a given detection probability. E.g., the value of WW at

D=0.5 (denoted by WWQ 5 ) is about 34 dB; WW0 9  15dec

These values are higher than those usually obtained in practice

under condition corresponding to the assumptions made; this prob-

lem will be discussed below.

In order to make some comparisons, let us estimate WW for

some suboptimal receptor systems, such as the single and double

subtracting systems mentioned above. We should mention that the

following considerations should be treated as a completely approx-

imate estimate; but they allow to understand better some aspects

or the physical interpretation of optimal reception in correlated

interference.

At k-0.06 (i.e. at k identical as in the example of the

optimal filter considered previously), the reductions for corre-

lated interference with Gaussian spectrum have the following values

for the single and double subtracting systems, cl=22 dB, r 4 dL,

respectively (cf. Fig. 9.3). The signal reduction is 3 dB for

the single system, and about 4.3 dB for the double system. With

noncorrelated interference weaker by 40 dB than the correlated

interference (as assumed in preparing Fig. 9.4.1), the interfer-

ence at the output of the periodic filter will therefore be der-

ived, mainly from the correlated interference in contrast to the

situation in the optimal filter. The summator system gives an

improvement of signal detectability for signals composed of N

pulses primarily in the presence of noncorrelated interference.

Noting again that the present analysis is a very rough estimate,

we can expect that for a suboptimal filter, i.e., with strong

remaining noise at the output of periodic filter, the signal

detected would be of a similar order as for the case of lack of

integration in the worst case i.e., for N=l. Therefore we can
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estimate WW 0 5 as approximately equal 20 dB for a double system,

and only several dB for a single subtracting system. For more

narrow-band interference, already at k=0.01 we have ;1=37 dB and

C2=71 dB. Therefore, for k=0.01 WW could be estimated close to
the optimal WW when a double subtracting system is used. In con-

trast, for a single subtracting system, WW 05at k=0.01 may be

roughly estimated to be about 20 dB.05

Evidently, when the suboptimal system has a periodic fil- /18~4

ter, with smaller correlated noise reduction than an optimal fil-

ter, it leads to a decrease in detectability for two reasons;

first, correlated interference is reduced less effectively; second,

there is a decrease in the effectiveness of post-detection integ-

ration. The examples considered show that in some cases post-

detection integration practically would be almost unnecessary. We

should mention that experience confirms this conclusion and in

practical applications one usually does not find any special integ-

ration systems (aside from the indicator screen) in receivers where

simple periodic filters are used in the form of single or double

subtracting systems.

Our estimates also suggest that for very narrow-band

passive interference with a Gaussian spectrum, the double subtracting

system could have properties similar to an optimal filter. This

would apply to the rather rare cases, since even omitting their

own fluctuations for passive interference, such a situation would

only occur at N>60 (cf. Appendix 6).

In summary, we can state that the advantages of optimal

filters are most apparent in detection of signals with correlated

interference having a large relative bandwidth. Compared to the

1When systems of non-quadratic reception are used (which is often
the case in practice), WW will decrease. This problem will be
considered below.
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single or double subtracting systems, the optimal filters then

allow a considerable improvement of signal detectability. This

also indicates the practical usefulness of using filters which

better approximate the optimal characteristics, e.g., double sub-

tracting systems with double feedback.

The problem of the detection effectiveness when a single

subtracting system is used, has been considered in the literature

from a somewhat different standpoint, namely assuming a ent

echo signal. Bailey [9.38] has estimated the detectabili , of a

coherent pulse signal with unknown carrier frequency, using a

single subtracting system with phase detection and post-detection

summation1 . Fig. 9.4.2 (taken from the reference cited) shows the

detection probability of a packet composed of 30 coherent pulses

(at F=10- 6), as a function of the reduced signal-to-noise ratio
=_ , where - the signal-to-noise ratio at the receiver

input, and C - reduction (non-normalized) of correlated interfer-
2

ence in the periodic filter

Evidently, for the detection probability d=0.5, in this

system the visibility coefficient WW0. 5 is smaller by about 5 dB

than - reduction of correlated interference. Similarly, WW0. 9 /185

1Wo, 1,l(_sI) dB) - !9dB[9.38], Fig. 8.

Vainshtein and Zubakov [9.3] also considered the detect-

ability of a coherent signal against a background of correlated

interference using a receiver equipped with subtraction systems.

They assumed that such a receiver is, approximately equivalent to

the optimal receiver for highly correlated interference. Fig.

lIn ref. [9.38] it was also assumed that the interference at the
summator input (i.e. at the output of subtraction and detector
systems) may be considered noncorrelated. The appropriate integrals
were calculated numerically, since exact solution could not be found.
2 It is easy to note that or2 is the ratio of signal power to
interference at the output of subtraction system.
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9.4.3 (taken from the reference cited) shows the detection pro-

bability of a nonfluctuating coherent signal with unknown fre-

quency, at F-10 - 5 . For the receiver signal subtraction was used

without post-detection summation. Curve A refers to the case of

a quadratic (two-channel) system, B - the single-channel system.

This figure illustrates the effect of omitting one channel on the

decrease in detection effectiveness ([9.3], Fig. 3.9). The aut-

hors also discussed the problem of detectability of a fluctuating

echo, using a receiver with a single subtracting system without

cost-detection summation, and included an example of a graph for

a specific case.

The questions related to the detectability of coherent

signals using subtraction systems (including multiple systems) has

been also considered at length in the work by Tartakowski et. al.

t(9.7 Ch. 4).

As indicated by the above, the signal detectability against

a background of correlated interference is related to the effective-

ness of its reduction . Knowing C, it is possible to reach cer-

tain approximate conclusions about the visibility coefficient T4W

0 0

/ 4L

16 .10 _ o__ a_0 V. 2

Fig. 9.4.2. Detection probability Fig. 9.4.3. Detection probab-
of a pocket of coherent pulses, with ility of a coherent signal us-
a single subtracting system with ing a two-channel system (curve
phase detection and without post- A) and a single-channel system
detection integration [9.38]. (curve B); single subtraction.
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(of course remembering the assumptions restricting such an app-

roach). Let us denote by Pk the average power of correlated inter- '1:t

ference, and by Pn - the average power of noncorrelated noise.

For the range of parameters seen in practice, usually 'I<, and

Il .'IVlpp. The visibility coefficient thus depends approximately

on the reduction of correlated interference C, or on the ratio of

the power of correlated interference to the noncorrelated noise

Pk/Pn, namely on the smaller of the two values. A more exact

estimate of the visibility coefficient can be obtained by the

methods described above.
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10. SO = ,HODS FOR D,2ROVG T LETECABIL! r ' OF _3' /183

In optimizing the receiving systems in preceding chapters

certain assumptions were made which can be fulfilled in practice

more or less exactly. Since under real conditions we encounter

objects with various properties, the system applied may in some

cases be close to the optimal, and in others (i.e., for an object

with different properties) it may not operate adequately. There-

fore it is necessary to consider certain technical methods which

allow to improve the detectability of certain types of signals,
1

which differ from those assumed in optimization

Another problem is the possibility of using more complex

system than the ones considered in the preceding chapters (e.g.,

devices operating with the use of more than one high frequency

channel). This permits to decrease the negative effect :f some

factors restricting the detectability, but at the cost of compli-

cating the device.

This chapter will consider some systems of this type; we

will also discuss some development prospects.

10.1. Decrease of the influence of "blind velocities"

In coherent systems operating on the principle of the

Doppler effect it is of course impossible to select the objects

whose radial velocity equals zero. The objects moving in the

direction perpendicular to the line connecting this object with

the radar station (operating on the above principle) will not be

detected.

-This chapter contains a system approach, with a special consid-
eration of MTI systems; ref. [10.1] contains a general discussion
of the possibility of dropping some assumptions about signals and
interference.
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For devices which operate by reducing stationary clutter

using periodic filters ard using a scanning signal in the form

of a coherent pulse series with repetition frequency f it is

also not possible to detect objects moving with certain radial /189

velocities called "blind velocities". As mentioned in preceding

chapters, these are velocities for which the Doppler frequency

equals a multiple of the repetition frequency. It is therefore

defined by the formula (cf. Ch. 2.5):

V., .- = 1 2, 3.2T,
- ~(10. 1.1)

With noncoherent signals whose spectral density has a

shape similar to the spectrum of a single pulse (cf. Ch. 7.1',

the phenomenon of "blind velocities" should not occur. However,

if th- optimal (or approximately optimal) receiving system de-

signed for detection of such signals against the background of

correlated interference is utilized in a radar device, a situa-

tion may develop in which objects giving approximately coherent

echoes will appear within the range of the device. Since perio-

dic filters are also present in the system disci'ssed (see Ch. 6

and 7), the phenomenon of "blind velocities" will be c.esent for
1

these objects

Obviously, the problem of reducing the effect of "blind

velocities" is important in radar. We will discuss below some

basic methods allowing more or less effective solution of this

problem:

A. Selection of the parameters of the device. As seen from

1We should mention that we are referring to systems where scan-
ning signals are coherent (or the reception system has a phased
coherent generator - see Ch. 2.5). Therefore the spectrum of
passiv. .nterference has a "line" shape; the noncoherence of det-
ected signal is due only to the rapid and strong fluctuations of
the object's reflection.
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(!0.I.I , by approoriately selecting lonz waves or an appropriately

high retetition frequency it is possible to achieve a displacement

of the first blind velocity (n=l) beyond the range of the veloci-

ties ci an be reached by the objects detected. It is easy to

note that the possibilities are rather limited here. in order to

achieve v.-=800m/sec at n=l, with f providing an unequivocal dis-c) ,p
tance reading within the range up to 250km, we must use a device

operating on the wave length of appr. 3m. At this wavelength there

are of course difficulties in achieving an appropriate discrimina-

tion in azimuth angle, which causes a decrease in detectability

aanza- sSive interference scattered over larger areas.

The reduction of the maximal pulse repetition frequency,

originating from the condition of unequivocal distance measurement,

may be omitted by using a special scanning system. in this sys-

tem the scanning signal is transmitted with a repetition frequency

similar to that of the conventional radar stations. However, this

signal consists of two rather closely spaced pulses. If the inter-

val between them is denoted by Tr, we can say that this system

corresponds to a system with a repetition frequency equal lI/T /190-r
with respect to blind velocities. For instance, the first blind

velocity could then increase severalfold compared to a conventional

station operating at the same X and f . Of course, the receiving

systems are constructed here somewhat differently than in a conven-

tional station. This method, beside its advantages, has also some

specific drawbacks. A more detailed analysis may be found in Ch.

2.8 of the book by Carpentier [10.21.

lOther possibilities have also been proposed, e.g., the realization
of the principle of stationary clutter reduction using additional
coherent modulation by a vibration with frequency much lower than
the carrier frequency, chosen with blind velocities in mind. For
the parameters mentioned above the scanning pulse (of appropriate
lengths) would have to be modulated by a sinusoidal vibration with
frequency of about 100MHz. Realization of such a system would be
difficult for both basic and technical reasons. In addition, be-
cause of the spacing of the lateral bands of the scanning signal,
this system would not have any advantage in the range of microwave
frequencies compared to the one described in C. Certain technical
advantages would be present in its application to devices operat-
ing in the visible range [10.39].
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B. Operation with variable repetition period. On the basis of

(10.1.1) we see that the value of blind velocities depends on the

repetition period T . By altering Tp it is possible to decrease

the effect of blind velocities. The variation of the period may be

carried out basically in various ways: between periods, every

few periods, between antenna revolutions, finally, in a slow man-

ner, corresponding to the "scanning" of the range of Doppler fre-

quencies. In practice, the method most often used is variation

between periods. This method is also called the method of opera-

tion with variable repetition period or with variable repetition

frequency.

This method is one of the simplest and effective in terms

of decreasing the effect of blind velccities. It is applied in

many radar stations (cf. Ch. 3). Therefore, we will discuss it

further in this chapter.

C. Operation at several carryier frequencies. Blind velocities

also depend on X (see eq. 10.1.1 ), but a rapid change of wave-

length (e.g. between pulses) would make the operation of the MTI

system practically impossible. What remains is the possibility of

switching the carryer frequency at greater time intervals (e.g.,

between antenna revolutions), which would involve some inconven-

ience, or the possibility of simultaneous operation at several

carrying wavelengths. Already at two wavelengths (with appro-

priate difference) the signal detectability in correlated inter-

ference may be better than in a single channel system with a varia-

ble repetition period (cf. [10.3], Ch. 4.11). This is because,

aside from the "effacing" effect of blind velocities there is an

effect similar to that seen in operation with frequency spacing1

(cf. [10.4,] Ch. 4), which gives a significant improvement of

detectability, especially at high detection probabilities [10.16].

The system in question has important advantages, but is is more

complex, which entails increased cost and other complications. /191

1A system with frequency spacing is also known as the system of

"frequency diversity" [10.5].
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D. Use of several separate radar stations. By using three sta-

tions, situated on earth's surface at some distance from each

other, the radial velocity of the object may not be equal to zero

for each of these stations when objects move in a plane. This is

the only method allowing to avoid the first effect listed at the

beginning of this chapter, i.e., the disappearance of objects

having a radial frequency equal to zero when using a coherent MTT

system. In the case considered all three radial velocities cannot

be identical either. It is possible to have a situation when these

velocities are different, but each of them is "blind" (i.e.,.
corresponds to a different value of n); with the increase of the

number of stations, the areas where this phenomenon may occur is

diminished.

Obviously, this is the most expensive method of all those

discussed. In addition,, we have here the problems of cooperation

between stations, transmission of output signals over large dis-

tances, utilization of information etc. ~.It should rather be

considered from the point of view of a system of radar stations

(together with transformation and information use systems), which

control a certain area, rather than from the point of view of a

single radar system.

Of the approaches mentioned, the most widely used is the

system of variable repetition frequency. We will consider it in

somewhat more detail later on in this chapter.

Operation with variable pulse repetition frequency

Variability of the period between pulses means the tech-

nical realization of a periodic filter with variable parameters.

In devices using memory tubes [10.5 - 10.7], the variation of the

1In the case when the use of the principle of bistatic radar is
desired, there are additional problems.
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period within rather wide limits does not require additional sys-

tem equipment [10.5]. But when delay lines are used, the varia-

tion of the period cannot be done arbitrarily because it requires

switching of the systems of delay lines, each of whinh has a de-

fined, constant delay1 [10.8, 10.9]. Therefore, in stations

having MTI systems with delay lines we use only double or at most

triple the repetition period [10.10-10.12]. In stations using

memory tubes the variation of the period can be carried out by

continuous modulation (so-called period wobbulation) [10.5].

Let us consider the case of double repetition period. /192

If we denote by F1 (w) the transfer function of a periodic filter

in the case of the shorter period, and if for the longer period it

is F2 (w), then the decrease of the effect of blind velocities can

be estimated from the function [10.13]:

Fr2w /~i)F( (10.1.2)

Fig. 10.1.1 9hows F.(cv) for the case of the single sub-

tracting system, for T1 /T2 =2/3 and T1 /T 2=7/8. Because of symmetry,

only one period F-,(0) for each case is shown. The first blind

velocity at TI/T2=m/n is defined by the formula:

T,;Tt 21 T 2n??22 (10.1.3)

The larger m and n, the larger will be the first blind

velocity, but at the same time the greater will be the gaps in

the averaged transfer function [10.8]. With the shaped transfer

functions (e.g., when the periodic filter is a double subtracting

system with feedback -see Ch. 7 and 8), it is possible to obtain

iWe do not discuss the details of realization in this chapter;
these system problems will be considered in detail in Vol. II.
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better gap filinrg [10.11]. Ref. [10.114] describes the method of

simplified determination of function i()and the evaluation of

the signal-to-noise ratio at the output of periodic filters with

variable repetition frequency.

CI,

Fig. 10.1.1. Average-quadratic transfer characteristic of a system
with single subtraction with variable repetition periods [10.13]
(normalized); abscissa - normalized Doppler frequency.

The necessity of using variable repetition frequency is

present especially when high detection probabilities are desired.
This may be illustrated by the following reasoning. Let us /193
assume that a nonfluctuating coherent signal without interference

is to be detected. In the case of reception with conventional

amplitude detection, in this case obviously D=O when the signal

amplitude U is lower than the threshold value U0, and D=l when

U>U 0 (curve A in Fig. 10.1.2).

In the case of coherent reception with phase detecticn

and a periodic filter in the form of a single subtracting system,
we have the following for a signal with uniform distribution of

the probability of the radial velocity (and therefore of the Dop-

pler frequency) ([10.15], p.651):
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(10.1.4)

The graph of this relation is shown in Fig. 10.1.2, curve

B. Detection of objects in the presence of passive interference

occurs at the cost of decreased detectability in this case. The

signal must have a high amplitude especially with respect to high

probabilities of detection.

I 1u
U/U,

Fig. 10.1.2. Detection probability of a signal with known ampli-
tude and unknown Doppler frequency: A-in amplitude detection;
B-for operation with a single subtracting system; C-for operation
with a single subtracting system and variable repetition period
(T1/T2=2/3) 110.13].

In contrast, the analogous graph for the case of variable

repetition frequency has a better shape, approaching curve A.

This makes it possible to obtain high detection probabilities.

E.g. during operation with variable frequency at T1 /T2 =2/3 (curve

C in Fig. 10.1.2), in order to detect the signal with a probabi- /194

lity of D-0.8, a signal.amplitude equal to one half of that with

constant average repetition frequency is sufficientI [10.13].

iI.e. repetition frequency f.__I _
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When periods T1 and T2 are not very different, the

reduction of correlated interference can be calculated as in the

case of operation with nonvariable period T=(T 1 +T 2 )/2. When the

difference is greater, a more detailed analysis is required

[10.13, 10.14]. The problem of signal detectability for variable

repetition frequency is considered in more detail in Ch. 4.11

of ref. [10.3]. Some problems related to the operation with var-

iable repetition frequency are also considered in refs. [10.7] and

[10.171.

10.2. Decrease of the influence of the modulation arising in

the course of space scanning.

In the course of space scanning using directional anten-

nas the echo signals undergo modulation because of the displace-

ment of the antenna characteriszic (see Ch. 5 and Appendix 1).

Thus the pulses reflected from the object have in this case a

variable amplitude even when this object does not fluctuate. As

follows from Ch. 7 and 9, this factor may - in some applications -

constitute the basic restriction of the detection effectiveness

for correlated interference, especially in devices where a small

number of pulses falls within a beam width.

As a result of this modulation, the spectrum of corre-

lated interference becomes wider. If we use an optimal filter,

or a filter approximating the optimal one rather closely, it is

possible to obtain good reduction of correlated interference1 ,

but at the cost of narrowing the filter passbands. This leads

to a decrease in signal detectability. In contrast, when non-

optimal filters (e.g. single subtracting systems) are used, it is

very difficult to obtain good reduction effectiveness with widen-

ing of the interference spectrum because of the modulation caused

1 .g., transfer functions of a double subtracting system with feed-
back, shown in Fig. 7.2.9 assure the reduction of 30dB with the
number of pulses falling within the beam width N-17 (Dl); 9(D2);
6(D3), for a nonfluctuating object [10.18].
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by antenna revolution [10.19].

Therefore, various systems have been proposed which

allowed to decrease the influence of the phenomenon described.

One of the methods uses discontinuous motion of the antenna, i.e.,

operation during M repetition periods with a defined antenna dir-

ection, followed by a discontinuous displacement of the radiation

characteristic by some angle, operation during the next M periods

etc. Realization of this system would require the app~lication of

one of the known methods of electronic steering of the beam motion.

Because of the manner in which compensation systems operate, appro-

priate blanking out of the output signal would have to be used at

the start and the end of each beam, in order to avoid noncompen-

sated first and last echoes [10.a.0]. The disadvantage of this /195

system is of course the lengthening of the scan time or the de-

crease of the accuracy in azimuth measurement and the signal

losses caused by blanking out. These losses can be avoided by

using a system in which the first of M pulses of an echo generated

by a given object are delayed by a time equal to (M-l)T P, the

second by a time (M-2)T petc. At the outputs of all delay system

one would thus obtain simultaneously the echo pulses corresponding

to the given object. Subtracting consecutively the output pulses

corresponding to the echoes generated by the first and second,
second and third, ... (M-1) and M scanning cycles, and adding up

the squares of these differences, one would thus obtain a reduc-

tion of correlated interference without signal loss caused by

blanking out.

Another method for decreasing the effect of modulation

caused by space scanning was proposed in ref. [10.21]. The

operation principle here is the introduction of additional anten-

nas with directional characteristics formed according to consec-

utive derivatives of the directional characteristic of the main

antenna. The signals obtained in this manner serve to compensate
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Fig. 10.2.1. Effectiveness of reduction as a function of the
pulse number N, falling within the beam width; n=0 - reduction
of a single subtracting system; n-l,2 - reduction with a single
subtracting system and correction antennas [10.21].

for the remainder generated by the modulation caused by the antenna

revolution. The system proposed was for the case of a system

equipped with a single subtracting system. With respect to the

reduction effectiveness (in considering only the effect of

antenna's revolution, i.e., for nonfluctuating objects), we can

say approximately that taking into account the characteristics up

to the n-th derivative theoretically makes it possible to obtain

the reduction ;Bdf (m+=,cdn (Fig. 10.2.1) [10.21] in this

system. Thus, if for some pulse number falling within the beam

width the reduction obtained with a single subtracting system /196

is 10 dB, then taking into account two correction antenna

characteristics would theoretically give a reduction of about 30

dB. In this system it would be necessary to maintain a constant

antenna revolutions rate. With periodic filters having a larger

number of delay lines, the device would also have to contain fur-

ther antennas and other systems.

Another system for compensating of the effect of space

scanning was proposed by the author in 19561. In order to explain
1 Similar ideas were also proposed in refs. [10.22; 10.23].
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its operation let us assume for a moment that the transmitting

antenna has a beam so wide that directional characteristics are

determined entirely by the receiving antennas. The conceptual

diagram of the receiving part of the station is shown in Fig. 10.

2.2.

Fig. 10.2.2. Block diagram of the receiving part of a device
operating with the system of compensation for antenna revolution.
1-Antenna 1, 2-Antenna 2, 3-local generator, 4-receiver, 5-coher-
ent generator, 6-delay line, 7-two-part rectifier, 8-display.

Both receiving antennas have identical directional characteris-

tics, but displaced in the plane of revolution by the angle

J,,=;.T, , where Y - angular velocity of antenna. Between pulses

the antenna system thus moves by an angle equal to the angular

displacement of the antenna characteristics. Thus antenna 2

assumes in space the same positions as antenna 1 had during the

previous scanning cycle. Because the signals received by antenna

1 are directed into a delayed channel, and those received by

antenna 2 - into the direct channel of the subtracting system,

the signals are completely compensated. This can be easily

illustrated for the case of an echo derived from a point station-

ary object. In Fig. 10.2.3. the curve B represents the envelope

of the pulse series received by antenna 1 and curve A the envelope

of pulses received by antenna 2. Curve C is the envelope-delayed

by time T_ - of the pulse train received by antenna 1, with the /197

sign changed. It is easy to note that the sume of curves A and

C equals zero. 251



One could also imazine a variation of this system, where

subtraction of the high freue .y signals occurs (similarly -o

the mono-pulse systems [10.9])and -he difference signal is given

as the correction-signal to the subtracting system (Fig. 10.2.4).

Fig. 10.2.3 Operating principle of the compensation system for
antenna revolution.

Tn the method described, the total compensation occurs

at a constant angular velocity y. The dependence of the reduc-

tion effectiveness on the tolerance of the velocity of antenna

revolutions is shown in Fig. 10.2.5 (for a Gaussian shape of the

antenna characteristic).

The use of a transmitting antenna with a wide beam would

obviously cause a loss of range. The transmitting antenna may

have a characteristic identical to that of the receiving antennas.

Let us denote the directional characteristic of the transmitting

antenna by g (k) and let us assume that the receiving antennas have

identical directional characteristics, but displaced by angle 6p:

910= g"(W + 6r); -, =(V- j). (10.2.1)

Thus the receiving antennas have characteristics situated symmet- /198

rically with respect to the characteristic of the 'transmitting

antenna (Fig. 10.2.6). The pulse envelopes will be proportional

to:

.,2o = )Y"00 V.( , + j- 1 (10.2.2)
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Fig. 10.2.4. A different realization o- -he receiv'ing part of a
4dvice operating by the system of compensaticn of antenna revo-
lution. 1-antenna I, 2-antenna 2, 3-subtracting system in
time, 4-iocal generator, 5-receiver, 6-receiver, 7-coherent zener-
atcr, 8-delaying line, 9-two-cart rectifier, !0-indicator.

4,18

a ! './'._____ ,

i i .*l I

0 W Z8 1.2 1,6 ZO

Fig. 10.2.5 Effect of tolerance Fig. 10.2.6 Respective position
of the antenna revolution rate on of directional characteristics
the compensation effectiveness in of the transmitting antenna and
systems shown in Fig. 10.2.2 and of receiving antennas in the
10.2.3. compensation system for antenna

revolution.
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The envelope of pulses at the output of the subtracting system
1

will have the form-:

U.(;-'t) I .l ;t - 2':] - ('
= .;t- ;.Tp),i¢ . + , - ';Tp) -

- ) . t - y) ( 1 0 . 2 . 3 )

As can be seen, if , T. , i.e. if , , then in a three-

beam system (with identical beams) we will also obtain complete

compensation of the effect of antenna revolution.

The above was concerned with a case when the device is

equipped with a periodic filter in the form of a single subtract-

ing system. If systems of multiple subtraction (or systems with

feedback) are to be used, multiple-beam systems would have to be

applied, which would complicate the device.

In the system described it would be possible to obtain

deflected beams by appropriate shaping of illuminating systems,

while the antenna mirror could be common. We should note, however,

that at y = 60'/sec (10 rpm) and f =400 Hz, A=0.15°; the realiza-P
tion of the appropriate illumination systems entails some techni-

cal difficulties.

In general it may be said that compensating systems for

the effect of antenna revolution, operating on the principle of

using additional receiving channels are rather complicated and

their application does not pay off as long as the number of pulses

falling within the beam width is not very small.

10.3. Some prospects of development.

1At a constant angular velocity y,=yt (cf. Ch. 5.1).
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We often mentioned in the orevious chapters that the

acproximation of the optimal receiver characteristics in practice

entails some difficulties, caused by the limited possibilities of

realization of the appropriate systems. Therefore it seems appro-

priate to discuss certain development prospects existing in this

area.

With respect to systems containing periodic filters with

designed characteristics (cf. Ch. 6.2 and 7.2), one of the main

difficulties in realization is the problem of obtaining a iar;er

number of delay channels and maintaining strict time tolerance

and the equality of transfer functions. This problem is related

both to the properties of the memory elements themselves and to

the cooperating systems. There is continuous progress in this

area [10.24]. In particular, delay lines of melted silicates are

made for ever wider bands. Lines have been developed with mary

branches and continuous delay regulation. A survey of the most

recent advances in this area is contained e.g. in ref. [10.25]1 .

Other types of memory elements are also being develcped [10.387.

There are also other technological possibilities here,

namely giving up the analog use of the distance coordinate and

introducing its discontinuity. In such a system the distance range

is divided into a large number of sections with the length appro-

ximately equal to the discrimination of the device in distance.

W.indowing systems are used successively, so that each distance

element corresponds to an appropriate filtering system. This sys-

tem usually contains a boxcar generator 2 , and therefore the filters

can be realized as simple systems of elements with focused con-

1The realization problems of MTI systems will be discussed in mere
detail in Vol. II; in the present chapter we will only list some
more important problems, related to the developmental prospects of
the devices.
2 In English literature, boxcar generator (cf. Fig. 2.15).
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stants. Cf course, it is easier in such a system to obtain a

good approximation of the optimal transfer function for the fil-

ter, althcugh at the cost of a significant complication of the

system as a whole. However, in the age of transistors and minia-

turization this is not the principal obstacle. The results ob-

tained with this system are better than in systems with delay

lines [10.9], Ch. 4.4.

Work is also going on concerning the application of

numerical signal processing; some authors believe that appropriate /200

systems will be more suitable for mass production ([10.24],10.40).

In order to obtain a reduction of the order of 40 dB, the signal

at the output of phase detector has to be quantized, and the num-

ber of the quantization levels should be about 100. The signal

generated in this way is coded appropriately, and then processed

in a computer (operating with the required speed) [10.41].

Regarding systems designed for reception of coherent

signals, one of the main difficulties here is both the approxima-

tion of the optimal expression [6.2.16], and the realization of

the appropriate systems.

The approximation of an algorithm of type [6.2.16] can

be implemented not only with a multichannel filter system, as

described in Ch. 6. In some cases it is possible to use the

principle of scanning the range of Doppler frequencies [10.26,

i0,27]. Also, iteration methods have been proposed, which make it

possible to approximate coherent integration without multichannel

filters, using a large number of multiplying systems and delay

systems [10.28].

The problem of approximation is related in this case to

the analog or discrete use of the distance coordinate. When using

purely electrical systems and an analog distance coordinate, a

multichannel filter system must be used. These systems can also
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be realized with the help of wide-band delay lines or branched

delay lines [10.29, 10.30]. In the cases of interest to us, the

filters should be periodic.

With a discrete distance coordinate, i.e. using appro-

priate systems of sequential windowing and large numbers of fil-

ter systems, various solutions are possible. We can also use

multichannel filters, which may be simpler in this case (non-
1

periodic) Thus we have in this case also a discretization

according to Doppler frequency. On the other hand, we can use
2

analog systems in the form of so-called memory filters 2
. Such a

system consists of a delay line and a feedback loop containing a

mixer and a local generator. The frequency of the local generator

exactly equals the inverse of the delay time of the line. One

can prove that after appropriate processing of the signal in the

system described, the signal at the output has the shape analogous

to the spectrum of the input signal [10.31-10.35].

New possibilities in the area of signal processing are

opened up by the systems of optical filtration. In some solu-

tions they make possible the two-dimensional filtration, giving

in this way one more C:;ree of freedom than electrical filtrations.

Optical systems are particularly suitable for algorithm realiza-

tion in cases with integral transformations [10.36, 10.37].

A more detailed discussion of many problems mentioned

above is contained in ref. [10.38]. In general, we can state /201

that with progress of systems-realization technology it becomes

possible to approximate the optimal receiver characteristics ever

more accurately. Systems of signal processing used in radar

stations are expanding.
1E.g. progress in the area of quartz filters allowed their wide-
spread use.
2Eng. Coherent Memory Filter, abbr. CMF
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APPENDIX 1 /2 03

TH FORM OF S!lJ3,AL REFLECTED IN COURSE OF SPACE S' .... NI t

Fig. D.l.1 represents a substitute diagram of the system

transmitting antenna-space with the object contained in it-receiv-

ing antenna. With the previously mentioned assumption of linearity

of the phenomena of reflection and dispersion of electromagnetic

waves, the system shown in the figure will be a linear system.

Thus various reflecting objects may be represented, including

appropriate representative quadrupoles parallel to the center

quadrupole, as shown by the broken line in Fig. D.1.i, which repre-

sents a system with time variable parameters with respect to the

effect of space scanning, reflection fluctuations, etc. Its

properties will be considered using general

7I

D.1.1. Substitute diagram of the system: transmitting antenna-
space being scanned - receiving antenna. 1-transmitting antenna,
2-space with the object contained in it, 3-receiving antenna.

methods for linear systems with variable parameters [D.l.1,

D.l.2].

The properties of the quadrupoles representing appro-

priate elements of the actual system will be defined in this case

by their pulse responses h(t, t'), and - as is known [D.l.1.] - an

equivalent pulse response hv of the entire system represented in

Fig. D.l.1 can be written in the form:

J h fA I
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where

h ,h - pulse responses of the quadrupoles representing the
fn 0 transmitting and receiving antenna;

hE - corresponding pulse response of the m-th reflecting
object (in other words - this is the pulse echo

originating from this object);

- symbol of the twist operation.

The signal u(t) will thus be defined by the relation:

U I,,) f . > . ( D . 1 .2 )

Let us consider the problem of the pulse response of

the antenna. The antenna systems used in radar can be repre-

sented in an idealized form as apertures whose linear dimensions

are large compared to the scanning signal wavelength. For a /204

uniformly illumined aperture of width D (where D ), with

a linear polarization, the field intensity in plane t in the far

range (Fraunhofer range) is defined by the relation:

con~t aino _
EA(.. d). - -

A .(D.l.3)

where: w - pulsation of the vibration feeding the antenna;

Dsin ,and c - velocity of wave propagation in space;
2C

r - distance from antenna [D.1.3].

By analogy, the expression (D.1.3) may be treated as the

characteristic of a hypothetical quadrupole, whose input receives

the scanning signal, and whose output signal is defined as pro-

portional to the appropriate component of vector t (D.1.4).

On the basis of known relations between the frequency character-

istic and the pulse response of the quadrupole we have:

AA.- }Y -' I CA. WI(D. 1. 4)
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where '~hdenotes inverse Fourier transform. Considering the

terms on the right-hand side of (D.1.3) we can note that a.

Multiplication by .1w in the frequency domain corresponds to

taking the differential in the time domain; b. o.. the basis of

theorem about displacement for Fourier transformations the

exponential term corresponds to the delay in time domain by a

quantity equal to E (D.15).
c

Thus, we can write:

For the direction of radiation corresponding to the

electrical axis of the antenna, ipO we will therefore obtain1

[AAJ... (:)(D.1.6)

For v~ we will have:

- ~-.+) CLe) (D.1-7)

Similarly we can find the pulse response of the antennas

for other functions of aperture illumination (D.1.J4), but the

general character of the phenomenon is not altered here, and

therefore the consideration of this problem is not necessary.

The physical interpretation of (D.1.9) and (D.1.10)

should be considered. As we know (D.1.6),

1To simplify notation we will assume the normalized form of the
pulse response, omitting constant coefficients.
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We should note, however, that in the problem considered in the

present work, the scanning signals are narrow-band signals, thus

a scanning pulse contains a large number (on the order of 103-

10 4) periods of carrier vibration. Therefore such a signal can

be represented in the form: 
I

-s - A (9 din (wO + j). (D. 1.9)

where

A(t) - envelope of the scanning pulse; /205

0 and -pulsation and initial phase of the carrier vibration.

Then

'9- t) &Col (,G2 + fl + ;4ino0.+. (D.!.10)

When A(t) is a pulse with a slope that is not too steep and with

duration time much longer than the period of the carrier vibra-

tion (as mentioned above), the second term of (D.I.12) can be

omitted. In this case the operation of the substitute quadrupole

of the transmitting antenna would be reduced to the appropriate

delay of the scanning pulse and the phase displacement of its

carrier vibration.

It should be noted that in practical problems it is not

important to know the absolute phase of the reflected signal,

since this is a random value, e.g. because of the properties of

reflecting objects (D.I.7); only the relative phase dependencies

are of interest. If the constant phase displacement, intro-

1 See Appendix 2.
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duced by the substituting quadruple of transmitting antenna is

o-mited, one can assume a simpliflied form of the pulse response

hA , important for narrow-band signals:
n

'" '-71(D.l.I11)

The assumption of this form of the pulse response can be also

interpreted as the assumption that in the band occupied by the

scanninz signal the frequency characteristic of the antenna is

constant, which occurs approximately in most practical cases
1

When W=O, the scanning signal is transformed by the

antenna in a more complicated manner. The problem of undefined

states in the antennas was considered in detail by Polk (D.1.8),

who also took into account the effect of lateral lobes. However,

for signal analysis in the present context, even in this case

certain simplifying assumptions can be made. As follows from

(D.1.7), if the scanning signal is much longer than d, we can

assume that the input signal into the substituting quadrupole

has certain undefined states (with duration time of the order of

d) at the start and the end of a pulse, and a defined state

within the pulse. In the defined state there is also a displace-

ment of the phase of the carrier vibration, and the signal

amplitude at the output changes in proportion to the value of the

second term of (D.1.7) [D.l.4]. The simplifying assumption in

question consists in omitting the undefined states. This is

possible because for radar practical antennas the time duration
2of an undefined state is very small compared to the pulse length

iUsually achievement of a uniform transfer band of the antenna
which is much wider than the width of scanning signal is the goal,
because of the possibility of re-tuning.
2 For an antenna span of several meters the time duration of an un-

defined state (for angles within +50 rom electrical axis of the
antenna) would be of the order of-10-- pS, while the lengths of
the scanning pulses in applications of interest to us are usually
larger than 1IS.
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The introduction of this assumption allows a very impor-

tant simplificaticn of the expression for the pulse response of

an antenna. Namely, it can be rewritten, in accordance with the

above, as follows:

°I +) (D.1.12)

where g () is the so-called voltage characteristis of the trans-

mitting antenna as a function of angle p (D.1.3).

In the case of space scanning, g'(- ) is a function of

time. For the most common case, when scanning takes place by

displacement of a characteristic with constant shape in angular

coordinates (in revolving antennas), - (t) -

If the displacement takes place with a constant angular velocity

y, then a.(,j= g + Y)

Thus we can write the pulse response of the substituting

quadrupole with variable parameters as follows:

C')
This is a pulse response of a quadruple of the so-called

class of separable quadrupoles, which can be represented in the

form of a serially connected filter with constant parameters and

an ideal amplitude modulator. In the case of the transmitting

antenna it will be the so-called separable type II quadrupole

according to the Kailath classification (D.1.9), i.e. the filter

is connected after the modulator. The separability of the quad-

rupole makes it much easier to operate the pulse response.

As shown by Mayo, Howells et al., with simplifying assump-

tions analogous to those for the transmitting antenna, we can

assume for the receiving antenna a similar form of the pulse
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response (D.1.4). However, because of the oppcosie direction

of signal propagation in space during reception, the substitu-

ting quadrupole of the receiving antenna should rather be repre-

sented in a form corresponding to type 1 according to the class-

ification in ref. [D.1.9].

It is easy to see from these considerations that such a

signal reflected from a point object can be represented as follows:

u'(0 - J.1. - w - I

o/ c,(D.I1.14)

where k - signal reduction defined by the radar range equation.
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APPENDIX 2 /2C7

01,1E PROPERTIFS OF 'ARROW-BEAD STCCHAST!C PROCES.

The narrow-band stationary stochastic process Y(t)

can be represented in the form (D.2.1.):

I. = 4C,1 o( ( D.2.1)

where the processes A(t) and (t) are defined by the relations:

AMt : ,:r.D. 2.2 )

00 arc t;
.:M (D.2.3)

and the process n(t) is related to the process (t) by the

Hilbert transformation:

T_ _ -rJ (D.2.4)

The integral in (D.2.4) should be understocd as the principal

value of Cauchy (D.2.2). The Process A(t) is called the envel-

ope, and (t) - the phase of the stochastic process (t). Both

A and ¢ are processes that change relatively little with time,

and:

15(t ... ,,I - ',j (D .2 .5 )

Substituting (D.2.5) into D.2.1) we will obtain:

(D.2.6)

Denoting:
p,,, Q ... : " ) - ... .' ( D .2 .7 )
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we can write the narrow-band process in the equivalent form:

,t)'ZM ; Co "'I - (D .2.8)

When processes P and 4 are Gaussian, the probability

distribution of process A(t) is determined by the Rayleigh law,

and the distribution of process 0 is uniform in the range 0-27

(D.2.1).

it can be shown that (D.2.3) the autocorrelation func-

tions of processes P(t) and Q(t) are ecual

Rp .T) Qtr) L) (D. 2.9)

The reciprocal correlation function RG(T) equals zero, if the /28

power spectrum W(w) of process -(t) is symmetrical with respect

to the carrier frequency ws (D.2.3). In this case:

f V~) osw do,.

0 , (D.2.10)

it follows from (D.2.10) and (D.2.8) that the autocorrelation

functions of the narrow-band process (t) is equal to:

;( r) - (.(,) i,. CD. 2. 11)
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APPENDIX 3 /209

SOLUTOq OF ThE F , E7'QU7ATIONS OF THE FIRST K.,=D BY ThE ,UTOD OF

OFTliCGONAL E)A1NSI3.,!S

In considering problems relatec- to optimization of recep-

tion with clutter it is important to obtain effective solutions

of irtegral equations of the type

*(t) = 1 , ')q',: ')d'. (D . 3. 1 )

This is the so-called Fredholm equation of the first kind (D.3.l).

Let us assume that

(D. 3.2)

where functions p form a complete system within the interval
n

(t,, t 2 ).

Then

(D. 3 . 3)

or

) -(D. 3.4)

where

t7

The solution of (4.2.1) is thus reduced to finding the coeffi-

cients an, using the known properties of functions q(t) and

y(t).
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This problem is considerably simplified in two cases:

a. if the series appearing in (D.3.3) and (D.3.4) is a power

series; the unknown coefficients can be determined by comparing

appropriate terms of the sum appearing on the right-hand side

with the power expansion of function q(t);

b. if functions y(t) form an orthogonal system, i.e. if:

f ,,), ;}p(l) &t - ',,.,, 4(D.3.6)

Then the coefficients an can be determined in the form:

(D.3.7)

In more general cases one can use orthogonalization of the func- /210

tion system by creating appropriate linear combinations of

functions yn' e.g. by the method of Schmidt, or by using bi-

orthogonal expansions (D.3.1). We will not consider these

methods further here, because they are not necessary in later

considerations.

A case that is directly usable for expansion of type a

is the equation with a kernal of the type e- (tt)2 As pres-

ented in part 2, this is an approximation of the correlation

function of some types of passive interference that is frequently

used. For expansicn we use here one of the properties of the

Gauss function, namely

XP ( - (D.3.8)

where H are the appropriate multinomials of Hermite;n

d,
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Evidently, in this case ,,-,,. Thus we can e. .

simply obtain the scl',tion of the integral equation

f(t) - exp I[- (9 - T)' q7,(') d4'

- (D.3.9)

Namely, let us take MO-a.H.It' ; (cf. eq. D.3.4).
M-0

Since (D.3.1):

f "-0 "i (D.3.10)

equation (4.2.9) is reduced to the form:

SO) - )- T a. 2-, M(D.3.11)
.- 0

From this we will obtain after transformation:

V., T(D.3.12)

However, we should consider in more detail the case b, since

it plays an important role in problems related to signal det-

ection. Using the fact that the nucleus r(,(&) is the auto-

correlation function of a stationary process, we can introduce

the following limiting assumptions with respect to ,

rJ'i) will now be a symmetric positive definite func-

tion. Secondly, we have F ,.z')-r -, (D.3.2).

Thirdly, we can assume that R(T) is, in accordance with the

Wiener-Chinchin theorem, a Fourier transform of the spectral

density function, and the latter is a measurable function of2
2e.g9.

- C. (C.~ ,, Ifls) + J)
a- . (D.3.13)

272



Il

and M+1 -<x.c.>o; ; for m-0.c. , is replaced by unity (D.3.2).

We can also introduce the assumption that R(T) is expressed by /211

the sum of exponential functions (D.3.2).

R()- b, >O; (D.3.14)

as follows from part. 3, this is actually true in the problems

considered here, because one of the cases in question is simply

Using the above assumptions we solve (D.3.1) using one

of the best known orthogonal expansions, namely the Fourier

transform. In order to simplify later transformatins we will

rewrite (D.3.1) in a somewhat different form, which is equiva-

lent to the assumptions made above:

(D.3.15)
~f ( - 1) Z(I') d9' - G(Q-to- al,

where
O< t < T, T !L ' 2; :

f '?(') U14 o < I' - T
tO for other values of t'.

Since the kernal is continuous everywhere, we can introduce

an "expanded" function G:

G
+ -  

) > T

G,(I, o+a =.G(t- q- , ,, e, V (D. 3.16)
iG- 0(-)t 9 < 0

where 0+=- G(r-,.Z-aG-. to_,l. Constants c ( + ) should be selected

such that the exponential functions in (D.3.16) assure appro-

priate behavior of the function Gr at infinity, making it possi-

ble to represent it in the form of the Fourier integral (D.3.2).
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The integral equation (D.3.15) can thus be rewritten

in the form to which the technique of Fourier tranform is easily

applied, namely:

. -x (D. 3.17)

where

(D. 3.18a)

IG, T I > T

' -- ) 1<0 (D. 3.18b)

Let us denote:

where p-jw. Using the Fourier transform on both sides of (D.3.16)

we will also obtain:

f + p- ' (D.3.20)

Using further the Fourier transform on both sides of (D.3.17) /212

and taking advantage of relations (D.3.19-20), we obtain:

2S',p) xt+)(p) - x(-)(P)

) W(plj) + 2 WP12( 
.

where W is the spectral power density, corresponding to the

correlation function R(T).

The desired solution ZT(t) will thus be obtained in the

form:
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J- dp
,17t f (p) ep, -- -ZT.,. 2,j (D.3.22 )

In order to obtain effective solution, however, it is necessary

to define the unknown functions X and X

This is usually a rather tedious procedure, unless the

specific properties of the functions appearing in the equation

simplify the definition of X+ ) .

It can be demonstrated that (D.3.2):

(D.3.23a)
X(-(p . , +) OrT b, - b,

n.2 (b, + p)) (b, + p)

and
_ p. _. b- .(D. 3. 23b)

(b. - i) (b - P)

where b. . .bn have identical meaning as in (D.3.14), and the

unknown coefficients yn are defined as

Sf C~ IT(r) dr, ( D . 24a )

,,- f m, s- Z(r) dr.-- (D.3.24b)

Substituting quantities X'+ ) obtained on the basis of (D.3.23)

into formula (D.3.21), we obtain the desired solution of equation
(+) Te r

(D.3.1) but with 2N-2 unknown coefficients n They are

determined by substituting relations (D.3.23) and (D.3.21) into

(D.3.15), and treating them as an identity. As an example we

can state that the solution of integral (D.3.1) in the case of

a kernal in the form Be-b T (correlation functions of this type

appear e.g. with waves reflected from interfering objects - cf.

part 3) is (D.3.2):
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Zro1 - (600 - U) - 0-0- a)] +i (G b1- . 44 - T) +
2 + (60 - G) .j(1 - 0 } 0 < < T. ( D . 3 . 2 5 )

where u-t 0 +a, T=Itlft 2 1.

In the work of Middleton [D.3.2] one can find the solu-

tions of more complicated integral equations of a similar type,

e.g. for a nucleus of the form n,.,-+n 2 oc. , etc.
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APPENDIX 4 /213

--.- D!SPAC TF=. FR ITEGRAL EQUATIONS

The scanning signals in radio- and sonar ranging are

usually pulses of high frequency vibrations with a carryer

frequency f. However, the examples of the solutions of the

integral equation described in Appendix 3 refer to the paths

which do not have a carrier frequency. Although there are no

re3:zSr~. :o p:event us from solving this equation using the met-

hods described in Appendix 3 even in the case of narrow-band

path with a carrier frequency. It is also possible to prove

a more general relation which simplifies the solution in the

case of narrow-band paths with carrier frequency, if the solution

of the appropriate integral equation for the envelope is known.

WIe will call this relation the displacement theorem for an integ-

ral equation, formulated as follows:

If ZT is the solution of the integral equation

:' p €: -,'lz ¢' "= ' .- 0 .(D. 4. i1)

then the solution of the integral equation

2 - (D.4.2)
2

is

ZT Z B,(1 (A ,,. n. . ( . 4. 3)

where

J - . -z'A - Jm [ -f ,

2V + 7 (D. 4. 4
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The formulation (D.4.2) follows from the fact that when

the stationary process C(t) has a correlation function P(r),

then the path : ....... , will have a correlation function equal

to --(,) .. for any phase angle $ (cf. App. 2).

Based on the known relationships with imaginary argument

functions and an exponential function with imaginary argument

and on the displacement theorem known from the Fourier transform

theory (D.4.1), it is possible to represent the solution of

(D.4.1) in the form (see App. 3, eq. D.3.21):

2 3
(p Xp -)(r -Al 

1
Q

IVo'p/"Tj) [ol/ .¢

2A-" r,(p + p.) -i- ,,i - p,) ---

W( -.- A) - W( - 10)

+ X(+ (P + P.) + X(+) (p - P.) + X() (P + p.) + X() (p - p.)] -
2jB - ,(p + P.) + .S(p - P.) + /214

W(f + 1.) + M( - A)

+ V+)(P + P.) + X(+)P - P.) + X(-)P + P.) + X<-p - pP.)] (D. 4.5)

Since both Sr (w) and W(w) are narrow-band spectra, we

can write (D.4.5) approximately in the form:

S(p) - 2(A - jB) S,(p + p,) + S'(p - p.)
SW(J + A) V(f - f)

+ X(
+

)(p+ p.) + X(+)(p-p.) X('.)(p p.)+ YU + X.) + -- 1.) . + Ix(; .) +

M-)(p - p.) ( X(+) (p + P.) X _ (Pp _ P.)
IVU- f.) HIU - A) iVV + f".)

+ A() (p + po) +-L-IP I

i r -f. TV(f+ .) (D. 4.6 )

The solution of (D.4.2) is found by taking the inverse

Fourier transformation of function So (p) (see App. 3); using

again the displacement theorem for the Fourier transform we can
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thus write on the basis of (D.4.6):

z.. - 2
T(t)(A od . + B in . t + (9), ( D .4 . 7 )

where A(t) is defined by (D.4.4). The displacement theorem is

proven in this way.

The displacement theorem (in its application to detec-

tion problems) can also be proven using the statistical indepen-

dence of the quadreftic components of the narrow-band stochastic

process, expressing the process realization probability in terms

of the probability of the components mentioned above.
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APPENDIX 5 /215

ON Tm :MCDUL.TiON OF SATONARY STOCHASI73_C PROCESSES

In many applications one may encounter paths generated by

periodic vibrations or almost periodic vibrations by amplitude

modulation of these vibrations by a stationary stochastic process.

if the carryer vibration is denoted by x(t), and the given sta-

tionary process by Z(t), we will obtain in this case -the stochas-

tic process

AN= x(& z(o. (D.5.1)

Processes of this type are sometimes called in the literature

the non-stationary periodic processes [D.5.!, D.5.2] Because

of the symmetry of (D.5.1) it can also be interpreted as the

modulation of a stationary stochastic process by a periodic path

(or almost periodic path).

We describe below some simple relations relating the

properties of a modulated stochastic process with appropriate

characteristics of the stationary process Z(t) and vibration

parameters x(t). The author has demonstrated in a previous

paper [D.5.3] that the modulation of a periodic (or almost per-

iodic) vibration by a defined path is, for certain kinds of

modulation, equivalent to the modulation of any harmonic vibra-

tion by this path. We will show here that a similar theorem in

the case of amplitude modulation is also true with respect zo

stationary stochastic processes.

As we know [D.5.4 and D.5.5], every stationary process

(in a more general sense) which obeys the condition

lin 2 (.5. 2
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can be represented in the form of a Fcurier-Stieltjes integral:

The function of spectral distribution S(w) Is a process

with orthogonal increases. We have

and

D '. 5 5

for disjoint intervals d .

The inverse relation between S,) and Z(t) can be written

in the form:

S(Oa 4; .JOD - S1 0) u _ _ _ _ _ _ _ Z4!a_ -, (D . . )

We will use these relations in oroving the theorem about ampli-

tude modulation.

As we know [D.5.] , if the oath y(t) has a spectrum

S y(w) determined by the Fourier transform /216

Sv~~~ap) ~ - ( t) (I

then the path ,(a).y(q)-. has a spectrum S(w)

(D.5.S8

ZBecause of the form of euatons. " fn Acp. 5, -he zu:.led, v e
will be denoted here by a bar above aprropriate terms, and not
by a star, as in the other formulas in -he present work.
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An analogous theorem holds for the spectral distribu-tin

3f stationary processes. For the function z O) . j,' we can

write formally on the basis of (D.5.6):

I T eJo. - .
$,(# + J.)-S().. hm U _ _ __ _

2, - Z.(m) di -
-T

or

- - (D.5. 10)

A periodic or almost periodic path x(t) can be written in the
form of a Fourier series

(, - J -, SD. 5 .9i

Substititing (D.5.11) into (D.5.!) we will obtain

,Mf)- 2' .4.e"' ( .. ,,Jc.D .5.• 12

Because of (.5.0.)

Since the infinite series is a Fourier series, and -

because of (D.5.3) - there exists an integral in (D.5.12), the

existence of the integral (D.5.13) follows from the Lebesgue

theorem about limited convergence (which can be formulated as a

theorem about series integration) (D.5.7).

The relation (D.5.13) can be written in the form:
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• 'd = f C '
, 

d S;(cv. • • -'

where
27 (D.= .15)S;o- A. S(. ,,."

In practical applications one needs primarily the power

spectrum or the autocorrelation function of a path.

Before determining the spectrum, we sh-cul oonser

briefly the kind of spectrum we will deal with. It follows from /217

the general theory which considers the possibility of determining

The energy property of a path with its spectral distribution,

,hat in contrast to the power spectrum in the case of soationary

processes, for processes considered here there exists an

"aver aged" spectrum, i.e. a spectrum with roscoe- tc

average power defined as lim

corresponds to an appropriately under-szood autocorrelation

funcoion (D.5.2, D.5.9). This should be remembered in the inter-

oretation of results in practical applications.

In order to determine the power spectrum n., derstoc n

this way we have to determine the mean of the product D.

,(, ,-.J) - W(w) - ) rS. . , - - , . .

Because of (2.5.15) we obtain:

J,)- 4,, - . . . -

It is easy to see that relation (D.;..17) can be written

in the form:
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M--f

%A IS(-,) + -
4 (, - a - J, )-J .

(D.5.18)

For J-< inf ,-'.3 the intervals ( ..... +, and

S....°... -J) are disjoint, and therefore, on the basis of

(D.5.5), the second term of (D.5.18) equals zero.

(D.5.19)

and _---

li.(6, + JW) - - C t(S.(w + JiC) - S(4) [s( + JS( - s((d-)1

(D.5.20)

On the basis of Wiener-Chinchin formula we can define

the autocorrelation function of the modulated path M(t):

f .M"'nW('.) -- CaCi (D.521)

Equation (D.5.21) is equivalent to the relation intro-

duced in (D.5.10) for the case of amplitude modulation. Since

the autocorrelation function of path x(t) is --

we can write (D.5.21) in a form where we will have the product

of the autocorrelation function of path x(t) and the power

spectrum of prooess Z(t), as in ref. [D.5.10] for the operation

of the inverse Fourier transformation.

On the basis of (D.5.19) and (D.5.21), the theorem of /218

amplitude modulation for stationary stochastic processes can be

considered proven. In fact, as follows from these equations,

the power spectrum or the autocorrelation function for a modu-
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lated path is obtained in such a form as if every harmonic of

path x(t) was subject to the modulation process by a stochastic

process individually.

The theorem proven here is of practical importance for

all cases where a modulation of the periodic path by a stationary

stochastic process is present; because of the symmetry of (D.5.1)

the same applies to the modulation of a stationary process by

the periodic path. Therefore, these are applications useful

when considering radar signals, sampling problems, etc.
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APPENDIX 6 /219

cOME INTERRELATIONS FOR THE SIGNAL AND INTUWERENCE SPECTRA

6.1. The width of fluctuation spectrum of passive interference

p.

The sepctrum W p(f) can be approximated by the expression

(cf. eq. 5.3.14):

wheret

a - coefficient dependent on the character of correlated noise;

fs- carrying frequency of the signal.

(D.6.1) can be written also in the form:

-0 .oast exp[(1o:.L) (D. 6.2)

where AP- the width of fluctuation spectrum of correlated inter-

ference fat the level of half-power (Fig. D.6.1), therefore A
f

is related to f 5 by the dependence:

- ~.* .(D.6.3)

4d

Fig. 6.1. Spectra of correlated and non-correlated noise.
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6.2. The width of modulation spectrum generated by antenna

revolution WA.

Let us assume a Gaussian shape of the directional antenna

characteristic

CAW) - "zP [270(~) (D.6.l4)

where *o - the width of antenna beam at the half-power level.

The time of transition of the beam by an angle equal to o is: /220

-. 6.5)

where N - number of pulses falling within the beam width.

.Using (5.3.5) and the known properties of the Gaussian

pulse spectrum we can write the power spectrum wA(f) in the form:

WA . -J)oO t..ez{_. [2,6 (N i1 ') . (D .6.6)

Thus the width of spectrum AA is:

Ji - 0.," (D.6.7)

In Fig. 7.2.2 we have introduced as a parameter the quantity
1

Thus, if the fluctuations were caused by the motion of the

antenna only, we would have:

(D.6.8)

6.3. The total width of the interference fluctuation spectrum

wp
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Based on (7.1.12), for Gaussian shapes of spectra W p(f)

and WA(f) we can write:

(D.6.9)

and therefore:

(D.6.10)

6.4. The ratio of power of correlated and non-correlated noise.

The power of non-correlated noise, falling within a

bandwidth equal to the period of a periodic filter characteristic

in frequency domain is:

P.- ,cf, (D.6.ll)

where

wo - spectral density of noncorrelated noise;

fp - the period of the periodic filter characteristic (Fig. D.

6.1).

The power of correlated noise, falling within the same

bandwidth, is (for a Gaussian spectrum shape): /221

- f o.

P*- ezp-I i d/29

*- (D.6.12)
k 3d.

Therefore, the ratio of the power of correlated and non-correlated

noise is:

0 a
PS W' &(D.6.13)
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APPENDIX 7 /222

SOME ASPECTS OF TH RADAR RECEPTIION WITHl NONCOERET INTERATION

The system of optimal reception of strongly fluctuating

signals, discussed in Ch. 4.2, contains a linear filter with

constant parameters, followed by a switch, quadratic detector,

and integrator. We should note the following aspects of the

operation of this system. The integration time must be appro-

priately adjusted to the time duration of the detected signal.

If the integration time is too short, we do not use part of the

signal; if it is too long, we integrate the noise unnecessarily

In the case of signal modulation in the process of space scan-

ning, weighted integration should be used, with the weight func-

tion appropriately adjusted to the directional antenna character-

istic. Since the time of arrival of the packet is not known,

the realization of the above requirements is not easy. An ideal

integration system of this type would have to contain a special

switch (mentioned in Ch. 4), which makes successive readings of

the voltage at the output of the linear filter and transmits

them to appropriate integration systems. This problem is con-

sidered in more detail in ref. [D-7.13.

In practical systems a similar operation can be approxi-

mated by various methods. During integration on the screen of

the image tube of a panoramic display, the integration charact-

eristics of the luminofore and the revolving motion of the radial

time base give a mode of operation somewhat resembling the one

described above. In applying visual integrators of the analog

type (e.g. with a delay line and feedback - see Oh. 8, their

characteristics are also chosen appropriately for the parameters

of the pulse packet. In devices mentioned above the "switch"
1 Let us note that at the input of a noncoherent integrator (unlike
in the coherent integrator), the noise has only positive values
becauseof quadratic detection.
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does not appear explicitly in the practical system The need

for a "switch" is more apparent, in the case of systems of auto-

matic numerical detection and determination of object coordinates.

Since these problems go far beyond the scope of the present

volume, we will only say that by appropriate programming of com-

puters used for this purpose it is possible to realize the

noncoherent numerical signal integration which approaches the

optimal, and at the same time to estimate the coordinates of the

detected objects. This problem is discussed in detail in ref.

[D.7.2] .
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